UNL-VRTM Notes 5 Jacobians to Gas Mixing Ratio

Xiaoguang Xu
Dept. of Chem \& Biochem Engineering,
The University of Iowa
xiaoguang-xu@uiowa.edu

March 27, 2018

Abstract

This note discusses the calculation of Jacobian with respect to gaseous mixing ratio from the VLIDORT output of profile Jacobian with recpect total gaseous absorbing optical depth.

1 Gas absorption and its Jacobian

UNL-VRTM considers up to 22 gas species. The gas absorption are computed using HITRAN spectroscopic database and gas profiles from various standard atmospheres and/or user-specified profile.

At any atmospheric layer, the gaseous absorbing optical depth is the summation of the absorbing optical depths of all gases.

$$
\begin{equation*}
\tau_{\mathrm{gas}}=\sum_{i} \tau_{\mathrm{gas}_{i}}=\sum_{i} 10^{-6} q_{i} N_{\mathrm{air}} \Delta H \delta_{i} \tag{1}
\end{equation*}
$$

where $\tau_{\mathrm{gas}_{i}}$ the optical depth of gas $i, \Delta H$ is the thickness (cm) of the layer, $N_{\text {air }}$ is the air molecular number density $\left(\mathrm{cm}^{-3}\right), q_{i}$ and δ_{i} are the mixing ratio (ppm) and absorption cross-section $\left(\mathrm{cm}^{2}\right)$ of the gas i.

If turned on, the Jacobian of Stokes S with respect to gas absorption of each layer will be calculated by UNL-VRTM, which is defined by

$$
\begin{equation*}
\mathrm{S}_{\tau_{\mathrm{gas}}}=\tau_{\mathrm{gas}} \frac{\partial \mathrm{~S}}{\partial \tau_{\mathrm{gas}}} \tag{2}
\end{equation*}
$$

2 Jacobian to gas mixing ratio

Now, we want to caluclate the Jacobian of Stokes S with respect to the mixing ratio q_{i} of given gas i, the $q_{i} \frac{\partial \mathrm{~S}}{\partial q_{i}}$, of any atmospheric layer. According to the chain rule,

$$
\begin{equation*}
q_{i} \frac{\partial \mathrm{~S}}{\partial q_{i}}=q_{i} \frac{\partial \mathbf{S}}{\partial \tau_{\mathrm{gas}}} \frac{\partial \tau_{\mathrm{gas}} \frac{\partial \tau_{\mathrm{gas}_{i}}}{\partial q_{i}} ~}{\text { git }} \tag{3}
\end{equation*}
$$

It is straightforward that $\frac{\partial \tau_{\text {gas }^{2}}}{\partial \tau_{\text {gas }_{i}}}=1$ and $\frac{\partial \tau_{\mathrm{gas}_{i}}}{\partial q_{i}}=\Delta H 10^{-6} N_{\text {air }} \delta_{i}$. So the equation (3) becomes

$$
\begin{equation*}
q_{i} \frac{\partial \mathrm{~S}}{\partial q_{i}}=q_{i} \frac{\partial \mathrm{~S}}{\partial \tau_{\mathrm{gas}}} \Delta H 10^{-6} N_{\mathrm{air} \delta_{i}=\tau_{\mathrm{gas}_{i}} \frac{\partial \mathrm{~S}}{\partial \tau_{\mathrm{gas}}}=\frac{\tau_{\mathrm{gas}_{i}}}{\tau_{\mathrm{gas}}} \mathrm{~S}_{\tau_{\mathrm{gas}}}} \tag{4}
\end{equation*}
$$

Finally, the derivative of S to gas mixing ratio q_{i} can be calculated by

$$
\begin{equation*}
\frac{\partial \mathbf{S}}{\partial q_{i}}=\frac{\tau_{\mathrm{gas}_{i}}}{\tau_{\mathrm{gas}} q_{i}} \mathbf{S}_{\tau_{\mathrm{gas}}} \tag{5}
\end{equation*}
$$

The units of $\frac{\partial \mathrm{S}}{\partial q_{i}}$ is radiance units divided by the units of q_{i}.

3 Jacobian to columnar density of any gas

Sometimes, one wants to calculate the Jacobian of Stokes S with respect to the columnar density (concentration) of any given gas i. The columnar density $\left(N_{i}\right)$ is the sum of columnar density at each atmospheric layer $\left(n_{i}(l)=q_{i} N_{a i r} \Delta H\right)$:

$$
\begin{equation*}
N_{i}=\sum_{l} n_{i}(l)=\sum_{l} q_{i} N_{a i r} \Delta H \tag{6}
\end{equation*}
$$

Jacobian of S to N_{i} can be caculated by

$$
\begin{equation*}
N_{i} \frac{\partial \mathbf{S}}{\partial N_{i}}=\sum_{l}\left[n_{i}(l) \frac{\partial \mathbf{S}}{\partial n_{i}(l)}\right] \tag{7}
\end{equation*}
$$

Replace $n_{i}(l)$ in above equation, we get

$$
\begin{equation*}
N_{i} \frac{\partial \mathbf{S}}{\partial N_{i}}=\sum_{l}\left[q_{i}(l) \frac{\partial \mathbf{S}}{\partial q_{i}(l)}\right] \tag{8}
\end{equation*}
$$

