UNL-VRTM Notes 5 Jacobians to Gas Mixing Ratio

Xiaoguang Xu Dept. of Chem & Biochem Engineering, The University of Iowa *xiaoguang-xu@uiowa.edu*

March 27, 2018

Abstract

This note discusses the calculation of Jacobian with respect to gaseous mixing ratio from the VLIDORT output of profile Jacobian with recpect total gaseous absorbing optical depth.

1 Gas absorption and its Jacobian

UNL-VRTM considers up to 22 gas species. The gas absorption are computed using HITRAN spectroscopic database and gas profiles from various standard atmospheres and/or user-specified profile.

At any atmospheric layer, the gaseous absorbing optical depth is the summation of the absorbing optical depths of all gases.

$$\tau_{\text{gas}} = \sum_{i} \tau_{\text{gas}_{i}} = \sum_{i} 10^{-6} q_{i} N_{\text{air}} \Delta H \delta_{i}, \qquad (1)$$

where τ_{gas_i} the optical depth of gas i, ΔH is the thickness (cm) of the layer, N_{air} is the air molecular number density (cm⁻³), q_i and δ_i are the mixing ratio (ppm) and absorption cross-section (cm²) of the gas i.

If turned on, the Jacobian of Stokes S with respect to gas absorption of each layer will be calculated by UNL-VRTM, which is defined by

$$\mathbf{S}_{\tau_{\rm gas}} = \tau_{\rm gas} \frac{\partial \mathbf{S}}{\partial \tau_{\rm gas}}.$$
 (2)

2 Jacobian to gas mixing ratio

Now, we want to caluclate the Jacobian of Stokes S with respect to the mixing ratio q_i of given gas *i*, the $q_i \frac{\partial S}{\partial q_i}$, of any atmospheric layer. According to the chain rule,

$$q_i \frac{\partial \mathbf{S}}{\partial q_i} = q_i \frac{\partial \mathbf{S}}{\partial \tau_{\text{gas}}} \frac{\partial \tau_{\text{gas}}}{\partial \tau_{\text{gas}_i}} \frac{\partial \tau_{\text{gas}_i}}{\partial q_i}.$$
(3)

It is straightforward that $\frac{\partial \tau_{\text{gas}}}{\partial \tau_{\text{gas}_i}} = 1$ and $\frac{\partial \tau_{\text{gas}_i}}{\partial q_i} = \Delta H 10^{-6} N_{\text{air}} \delta_i$. So the equation (3) becomes

$$q_i \frac{\partial \mathbf{S}}{\partial q_i} = q_i \frac{\partial \mathbf{S}}{\partial \tau_{\text{gas}}} \Delta H 10^{-6} N_{\text{air}} \delta_i = \tau_{\text{gas}_i} \frac{\partial \mathbf{S}}{\partial \tau_{\text{gas}}} = \frac{\tau_{\text{gas}_i}}{\tau_{\text{gas}}} \mathbf{S}_{\tau_{\text{gas}}}.$$
 (4)

Finally, the derivative of S to gas mixing ratio q_i can be calculated by

$$\frac{\partial \mathbf{S}}{\partial q_i} = \frac{\tau_{\text{gas}_i}}{\tau_{\text{gas}} q_i} \mathbf{S}_{\tau_{\text{gas}}}.$$
(5)

The units of $\frac{\partial \mathbf{S}}{\partial q_i}$ is radiance units divided by the units of q_i .

3 Jacobian to columnar density of any gas

Sometimes, one wants to calculate the Jacobian of Stokes S with respect to the columnar density (concentration) of any given gas *i*. The columnar density (N_i) is the sum of columnar density at each atmospheric layer $(n_i(l) = q_i N_{air} \Delta H)$:

$$N_i = \sum_l n_i(l) = \sum_l q_i N_{air} \Delta H \tag{6}$$

Jacobian of S to N_i can be callated by

$$N_i \frac{\partial \mathbf{S}}{\partial N_i} = \sum_l \left[n_i(l) \frac{\partial \mathbf{S}}{\partial n_i(l)} \right] \tag{7}$$

Replace $n_i(l)$ in above equation, we get

$$N_i \frac{\partial \mathbf{S}}{\partial N_i} = \sum_l \left[q_i(l) \frac{\partial \mathbf{S}}{\partial q_i(l)} \right] \tag{8}$$