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1 Introduction

The Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) was specif-
ically designed as a testbed for remote sensing of Earth atmosphere and surface,
especially for aerosols. Since its debut in 2014 (Wang et al. 2014), UNL-VRTM has
been applied to various studies in remote sensing of aerosols, clouds, trace gas, and
ground surface. The model itself has also gained many important updates. In this
chapter, we aim to provide a comprehensive description of its physics, philosophy,
and capabilities, and also to review recent updates and applications.

We begin in Sect. 1.1 with a brief overview of recent advancements in aerosol
remote sensing techniques — these provide justification for the necessity to develop
a remote sensing testbed tool such asUNL-VRTM. In Sect. 2, we describe the compo-
nents of the UNL-VRTM forward model with emphasis on the physics of each com-
ponent and how the components are coupled. Section3 presents the theory of inverse
modeling and information content analysis, which is deployed in UNL-VRTM to
provide objective assessments of any observation system. Section4 reviews recent
applications and demonstrates the capabilities of UNL-VRTM in spectroscopic and
polarimetric remote sensing of aerosol microphysical properties. In Sect. 5, we high-
light the limitations of the model and discuss several ongoing important updates.
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1.1 Current and Future Aerosol Remote Sensing

Atmospheric aerosols emitted from both natural and anthropogenic sources have
diverse impacts on Earth’s weather, climate, and environment. On one hand, fine
aerosol particles present in ambient air can degrade visibility and pose a hazardous
threat to human health (World Health Organization 2017). On the other hand, they
affect Earth’s energy budget directly by scattering and absorbing solar and terrestrial
radiation, and indirectly through changes in cloud formation, lifetime, and radiative
properties (Boucher et al. 2013). However, quantification of these effects in current
climatemodels represents the largest uncertainty in estimates of anthropogenic radia-
tive forcing. The global average of the aerosol effective radiative forcing was esti-
mated to range from –0.1 to –1.9Wm−2 with the best estimate of –0.9Wm−2 (Myhre
et al. 2013), indicating that the cooling effects of aerosol might partially offset the
estimated warming effect of 1.82 ± 0.19 Wm−2 caused by the increase of carbon
dioxide (CO2) since the industrial revolution. The climate effects of aerosol particles
depend on their geographical distribution, optical properties, and chemical compo-
sition. To fully understand the role of aerosol particles in global climate change and
to monitor air pollution migration, observations of the global distribution of aerosol
properties are highly desirable.

Remote sensing observations from satellite and ground-based platforms have
provided key datasets for understanding the role of aerosols in physical processes
governing changes of air quality, visibility, surface temperature, clouds, and precip-
itation (Hoff and Christopher 2009; Kaufman et al. 2002). Global data records of
aerosol parameters have emerged on a routine basis since the launch of the Terra
satellite in 1999 that carries the Moderate Resolution Imaging Spectroradiometers
(MODIS) and theMulti-angle Imaging SpectroRadiometer (MISR) instruments. Fol-
lowing that, the ‘A-Train’ afternoon constellation of satellites comprises several
dedicated satellite sensors in sun-synchronous low-Earth (LEO) orbits (Fig. 1), pro-
viding an unprecedented view of the global aerosol system. These sensors include
another MODIS instrument on the Aqua platform launched in 2002, Ozone Moni-
toring Instrument (OMI) on the Aura satellite launched in 2004, POLarization and
Directionality of the Earth’s Reflectances (POLDER) polarimeter on the PARASOL
satellite launched in 2004, and theCloud-Aerosol LidarwithOrthogonal Polarization
(CALIOP) launched in 2006. In addition, the European Envisat satellite launched
in 2002 was equipped with several sensors for aerosol retrievals (see a review in
Kokhanovsky et al. (2007)), including the MEdium Resolution Imaging Spectrom-
eter (MERIS), the Advanced Along Track Scanning Radiometer (AATSR), and the
SCanning ImagingAbsorption spectroMeter forAtmosphericCHartographY (SCIA-
MACHY).

Except for CALIOP, which is an active remote sensing instrument probing the
vertical distribution of aerosol lidar backscattering, the other A-train satellites are
passive remote sensing instruments and are complementary to each other in their
observation strategies and abilities to characterize aerosol parameters. Aside from
the usual retrieval of aerosol optical depth (AOD), examples include the additional
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Fig. 1 The A-train afternoon constellation satellites as of 2011. Source https://atrain.nasa.gov/

determination of fine- and coarse-mode AOD ratios from MODIS’s multispectral
radiance data (Levy et al. 2007; Remer et al. 2005), derivation of AOD for non-
spherical particles and up to three size modes from the MISR’s multispectral multi-
angular radiance data (Kahn et al. 1997; Kalashnikova and Kahn 2006), absorbing
AODs of high-elevation aerosols from the OMI’s ultraviolet (UV) radiance data
(Torres et al. 2007), aerosol particle size distribution and refractive index (or single
scattering albedo) from POLDER’s multispectral multi-angular polarization data
(Dubovik et al. 2011; Tanre et al. 2011), and aerosol plume height retrieval over
the ocean from MERIS and POLDER radiance measurements in the O2 A band
(Dubuisson et al. 2009). Additionally, the Aerosol Polarimetry Sensor (APS) was
designed to provide accurate aerosol microphysical properties from its multi-angular
multispectral polarimetric measurements (Mishchenko et al. 2007). Unfortunately,
APS was carried by the Glory satellite, which did not reach its orbit in 2011 due to
a malfunction on the launch vehicle.

Recent years have seen several more aerosol-related sensors launched, most
of which were intended heritage instrument of related A-Train sensors, but with
enhanced capabilities. These include the Visible Infrared Imaging Radiometer Suite
(VIIRS) onboard the Suomi-NPP and JPSS-1 satellites launched in 2011 and 2017
respectively. VIIRS is a MODIS heritage instrument but with enhanced spatial cov-
erage and the addition of a Day/Night Band (DNB) (Jackson et al. 2013). The VIIRS
DNB has been found useful for night-time aerosol monitoring from its measure-
ments over artificial urban lights (McHardy et al. 2015; Wang et al. 2016). The
TROPOspheric Monitoring Instrument (TROPOMI), onboard the Sentinel-5P satel-
lite launched in 2017, is a heritage of OMI and SCIAMACHY spectrometers but
with a higher spatial resolution and with a spectral range extended to the shortwave
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infrared (Veefkind et al. 2012). TROPOMI promises to provide aerosol layer height
retrievals along with UV absorbing aerosol properties (Sanders et al. 2015). The
Earth Polychromatic Imaging Camera (EPIC) is carried by the Deep Space Climate
Observatory (DSCOVR) spacecraft, situated around 1.5 million km distance at the
Earth-Sun Lagrange-1 point. EPIC observes the entire sun-lit disk of the Earth every
1–2 h, offering potential for aerosol height retrievals multiple times daily from the
measurements in O2 A and B bands (Xu et al. 2017, 2018).

Ground-based remote sensing, though much more sparsely distributed compared
to that from satellite observations, can provide aerosol measurements of higher accu-
racy. One example is the Aerosol Robotic Network (AERONET). With more than
one thousands locations (as of 2019) around the world, most AERONET sites are
equippedwith an automatic sun and sky scanning spectral radiometer, or the CIMEL-
318 type sun photometer, to measure direct and diffuse solar radiation in various
atmospheric window channels (Giles et al. 2019; Holben et al. 1998). The direct-sun
radiance data are used to infer the spectral AOD, with an uncertainty of about 0.01.
The sky radiances are inverted to retrieve aerosol particle size distribution, refrac-
tive index, and fraction of non-spherical particles (Dubovik and King 2000; Dubovik
et al. 2006). AERONETAOD and inversion products have been widely used to study
the regional climatology of aerosol optical properties (Dubovik et al. 2002) and to
develop and validate satellite aerosol retrieval algorithms for sensors like MODIS
(Levy et al. 2007; Remer et al. 2005).

Progress in aerosol remote sensing during the last two decades suggests that for a
full characterization of aerosol optical properties, future satellitemissions should rely
on a combination of multispectral and multi-angular measurements of radiance and
polarization (Mishchenko et al. 2004, 2007). Indeed, supported by recent advance-
ments in the polarimetric aerosol retrieval algorithms [see reviews by Dubovik et al.
(2019), Kokhanovsky et al. (2015)], several satellite missions have been planned to
launch polarimeters in the next few years (see Dubovik et al. (2019) for a complete
list). These include Hyper-Angular Rainbow Polarimeter-2 (HARP-2) and SpexOne
on the PACE satellite, Multi-Angle Imager for Aerosols (MAIA) on the OTB-2 satel-
lite (Diner et al. 2018), and Multi-View Multi-Channel Multi-Polarization Imaging
(3MI) instrument on theMetOp-SG satellites (Fougnie et al. 2018). Though different
in their spectral and angular configurations, these sensors all aim at determination
of detailed aerosol particle size distribution and refractive index from multispectral
multi-angular polarimetric observations (Dubovik et al. 2019).

In contrast to future sensors based on the polarimertic capability, several other
aerosol-related satellite missions are planned to observe aerosols along with trace
gases or the Earth’s surface from the hyperspectral perspective. These include the
TEMPO (Tropospheric EMissions: Monitoring of POllution) instrument (Zoogman
et al. 2017), the Geostationary Environment Monitoring Spectrometer (GEMS) mis-
sion (Bak et al. 2013), and the Ocean Color Instrument (OCI) of the PACE mission
(Omar 2018).
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1.2 The Need for a Remote Sensing Testbed

As discussed above, aerosol remote sensing is approaching a new era that embraces
bothmultispectral multi-angular polarimetric and hyperspectral observations. A vital
question arises when it comes to designing a new observation system or a new
satellite mission: how can the observation system be optimally configured (in terms
the selectionof a sensor’s spectralwavelengths, viewangles, andmeasuredquantities
such as radiance and polarization) to fulfill the mission scientific requirements, given
the constraints associated with the mission’s budget?

UNL-VRTM was designed to address this kind of question in a cost-effective
manner (Wang et al. 2014). It was designed to provide an objective assessment of the
aerosol information content resulting from any set of (planned or real) instrument
configurations. This capability is achieved through the integrated combination of
forward models for particle scattering and radiative transfer together with formal
inversion theory that uses a standard set of variables (such as Degree of Freedom
for Signal, or DFS) to quantify the retrievable information (Rodgers 2000). Since
aerosol retrieval is in essence an inverse problem, formal inversion theory is well
suited for the full investigation of aerosol information content for any given set of
synthetic or real observation data, and the comprehensive assessment of retrieval
accuracy and its dependence on sources of uncertainty in a priori constraints, model
parameterizations and intrinsic model assumptions, and instrument error.

As noted in Wang et al. (2014), the UNL-VRTM testbed is expected to address
the following challenges in order to manipulate increasingly complicated remote
sensing observations:

1. The tool will allow users to incorporate instrument errors and prior constraints
in the retrieval and information analysis;

2. The tool will allow users to readily change algorithm definition factors (such as
selection of wavelengths and angles);

3. The tool will compute in a direct manner the sensitivity of measured quantities
(such as radiance and polarization) with respect to retrieved aerosol parame-
ters (such as coarse/fine-mode AOD, aerosol particle size parameters, refractive
indices, and aerosol shape factor, vertical profiles, etc.);

4. The tool should treat the relevant physical processes (such as absorption spectra
of trace gases, molecular scattering in the atmosphere, and surface reflectance)
in a rigorous manner;

5. The tool will allow for the analysis of information content, degree of freedom
for signal and sources of retrieval error for all desired aerosol parameters to be
retrieved.

In December 2014, we made the UNL-VRTM version v1.3 package available to
the aerosol remote sensing community and public through https://unl-vrtm.org. The
website also serves as a platform to broadcast model updates and advance collabo-
rations. As shown in Fig. 2, as of January 2019 the model is applied by over 50 users
from 8 countries. It has been used for a wide variety of remote sensing applications
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Fig. 2 Map of UNL-VRTM user groups as of January 2019. Source https://unl-vrtm.org

not limited for aerosol studies, but also for remote sensing of trace gas, clouds, and
ground surfaces.

We have been continuously improving and upgrading the UNL-VRTM capabil-
ities. The current release version is v2.0.2, which includes several major updates
from v1.3: (a) extending the spectral range from shortwave-only to thermal infrared
(0.2–40 µm); (b) adding the continuum absorption for H2O, CO2, O2, and N2; (c)
enabling calculation of Jacobian with respect to trace gas absorption and mixing
ratio; (d) adding a surface reflectance library for typical surface types; (e) enhancing
flexibilities for defining sensor configuration; (f) adding interfaces for incorporation
into global climate models.

2 The UNL-VRTM Forward Model

As shown in Fig. 3, the UNL-VRTM testbed combines a forward radiative transfer
operator that simulates remote sensing observations, and the optimal estimation the-
ory that assesses and inverts the observations. This section focuses on the forward
model part, and the inverse modeling and information content analysis are discussed
in Sect. 3.

The UNL-VRTM forward model constitutes six components:

1. A vector radiative transfer model, VLIDORT (Spurr 2006);
2. A linearized Mie electromagnetic scattering code (Spurr et al. 2012);
3. A linearized T-matrix electromagnetic scattering code (Spurr et al. 2012);
4. A module computing molecular scattering in the atmosphere;
5. A module computing gaseous absorption in the atmosphere;
6. A module computing various bidirectional reflectance/polarization distribution

functions (BRDF/BPDF);
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These modules are integrated for the forward calculation of radiation such as
the light radiance and state of polarization. Mathematically, the radiation field is
described by a Stokes 4-vector (I) specified at user-defined spectral wavelengths,
atmospheric levels, and viewing directions. As such, the model can be specified to
simulate any set of remote sensing measurements from the UV to the thermal IR
(the current default wavelength range stretches from 0.2 µm to 40 µm) taken by
instruments from satellite, airborne, or ground-based platforms.

The inputs for the forward calculation are (a) spectral and geometrical definitions
that characterize specifications of an observing sensor; (b) the profiles of atmospheric
properties and constituents (e.g., air temperature, pressure, gaseous mixing ratios,
and aerosol concentrations); (c) mono- or multi-modal aerosol microphysical param-
eters, such as particle size distribution (PSD) and refractive index; (d) parameters
characterizing surface reflectance.

One of the outstanding features of the UNL-VRTM model, thanks to the VLI-
DORT (Spurr 2006) and the linearized Mie/T-matrix scattering codes (Spurr et al.
2012), is the simultaneous calculation of Jacobians of the Stokes vector I with
respect to a suite of particle, gas, and surface parameters. The latter include (but
are not limited to) AOD, aerosol single scattering albedo and phase function, aerosol
PSD parameters and refractive index, gas absorption and mixing ratio, and surface
reflectance related parameters. The Jacobians, also frequently called weighting func-
tions, can be calculated for both bulk property (total column) and profile parameters,
for example, the total-column AOD and profile AODs for individual atmospheric
layers.

The UNL-VRTM forward model also features a simple and user-friendly inter-
face (Xu and Wang 2018). We have combined all the modeling options and switches
into a single input file, in which users may specify options related to assumptions in
radiative transfer modeling, including spectral samplings, atmospheric profiles, air
molecular optics, aerosol physical and optical properties, surface property, and vari-
ables to be diagnosed, etc. These model settings are grouped into menus with each
menu controlling the options for a particular aspect of UNL-VRTM model. Model
outputs are saved in a single file of ‘netcdf’ format. A complementary Python util-

Fig. 3 Flowchart of the UNL-VRTM components. See text for detail

a.kokhanovsky@vitrocisetbelgium.com



8 X. Xu and J. Wang

ity package, pyunlvrtm (available at https://github.com/xxu2/pyunlvrtm, accessed
12 Jan 2019), has been developed for efficient processing of UNL-VRTM inputs and
simulated data.

In the following text of this section, we start with a brief review of the Stokes-
vector parameters used to describe the electromagnetic filed as detected by any
remote sensing instrument (Sect. 2.1). Then, we describe the development of the
component modules that make up the UNL-VRTM forward model (Sects. 2.2–2.8).
Finally, UNL-VRTM benchmark simulations and model verifications are presented
in Sect. 2.9.

2.1 Definitions of Stokes Parameters

The radiance and polarization of light at any wavelength can be represented by a
Stokes column vector I having four elements (Hansen and Travis 1974):

I = [I, Q,U, V ]T , (1)

where I is the total intensity (or radiance) of the light beam, Q describes the amount
of linear horizontal or vertical polarization, U describes the amount of linear polar-
ization at ± 45◦, V describes the state of circular polarization, and T indicates the
transpose operation. It should be noted that all radiation fields and optical parameters
are functions of the light wavelength λ. For simplicity, however, λ is omitted in all
formulas of this chapter.

The degree of linear polarization (DOLP) is defined by

DOLP =
√
Q2 +U 2

I
. (2)

The angle of polarization (ψ) is defined to satisfy

tan 2ψ = U
Q
, or ψ = 1

2
tan−1

(
U
Q

)
+ ψ0, (3)

where ψ0 = 0 if Q > 0 and U ≥ 0; ψ0 = π if Q > 0 and U < 0; ψ0 = π/2 if
Q < 0.

Stokes parameters are always defined with respect to a plane of reference.
Although the choice of a reference plane is arbitrary, observational or theoretical
considerations will dictate the use of one plane in preference to the others. For
instance, in the solar principal plane,U is negligibly small for a solar beam traveling
in a homogeneous atmosphere. In this case, Eq. (2) becomes DOLP = −Q/I .

We often need to convert the Stokes parameters by transforming the plane of
reference. Such a transformation can be done with a rotation matrix defined by
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L(α) =

⎡

⎢⎢⎣

1 0 0 0
0 cos 2α sin 2α 0
0 − sin 2α cos 2α 0
0 0 0 1

⎤

⎥⎥⎦ , (4)

whereα is the angle of rotation,α ≥ 0. The rotation is in anti-clockwise when looking
in the direction of light propagation (Hovenier and van der Mee 1983). For Stokes
parameters in the new reference plane (denoted by the prime symbol), we can write

I′ = L(α)I. (5)

Stokes parameters I and V are invariant for such a transformation, but Q and U , as
well as ψ , will change:

Q′ = Q cos 2α +U sin 2α, (6)

U ′ = −Q sin 2α +U cos 2α. (7)

Equations (6) and (7) show that DOLP is also invariant for the transformation.
In most situations, Stokes parameters measured from satellite polarimeters (such

as POLDER) are reported in terms of the local-view meridian plane, i.e., the plane
containing scatted beam in the view direction and local surface normal. For specific
applications, Q and U often need to be transformed to the solar meridian plane (the
plane containing solar beam and surface norm) or the scattering plane (the plane
containing solar beam and viewing vector).

Figure4 illustrates the relationships between the view meridian plane (colored in
blue), solar meridian plane (colored in red), and the scattering plane (through OBA).
Here, the incident solar beam OA is specified by an azimuth angle of φ0 and a zenith
angle of θ0. The scattered light is in the view direction OB with an azimuth angle of
φ and a zenith angle of θ . Points A, B, and Z are located on the unit sphere, with
OZ as the local normal. From this sketch, we see that:

• A rotation of σ2 is required to transform the reference plane for the scattered light
from the view meridian plane to the scattering plane;

• A rotation of σ1 is required to transform the reference plane for the scattered light
from scattering plane to solar meridian plane;

• A rotation of −(φ − φ0) is required to transform the reference plane for the scat-
tered light from the view meridian plane to the solar meridian plane. Here we use
negative φ − φ0 because the rotation is clockwise when looking in the direction
of light propagation.

Note that the condition π < φ − φ0 < 2π is equivalent to f 0 < φ − φ0 < π . And,
if φ − φ0 equals 0 or π , both the incident and view meridian planes coincide with
the scattering plane.

It is convenient to derive these rotation angles in the conventional spherical coor-
dinate system. Indeed, the sides of the spherical triangleOBA in Fig. 4 are θ0, θ , and ξ ,
facing to its angles are σ2, σ1, and φ − φ0, respectively. Here, ξ is called phase angle

a.kokhanovsky@vitrocisetbelgium.com
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Fig. 4 Illustration of relationships between themeridian planes and the scattering plane.An incident
solar beam from A is scattered by a local element at O (e.g., surface or the atmospheric medium).
OZ is the local surface normal. The direction of incident light is AO specified by an azimuth angle
of φ0 and a zenith angle of θ0. The scattered light is in the direction of OB with an azimuth angle
of φ and a zenith angle of θ . Hence, the scattering plane is through AOB; view and solar meridian
planes are blue and red, respectively. Points A, B, and Z are located on the unit sphere. After Fig. 3
of Hovenier and van der Mee (1983)

of scattering, which is supplementary to the scattering angle Θ , i.e., ξ = π − Θ .
From spherical trigonometry, these angles satisfy

cos ξ = cos θ0 cos θ + sin θ0 sin θ cos (φ − φ0), (8)

cos σ1 =
cos θ − cos θ0 cos ξ

sin θ0 sin ξ
, (9)

cos σ2 =
cos θ0 − cos θ cos ξ

sin θ sin ξ
. (10)

From the spherical sine law, we have in addition

sin σ1

sin θ
= sin σ2

sin θ0
= sin (φ − φ0)

sin ξ
(11)

From Eqs. (8)–(11), one thus can determine the rotation matrix to transform the
Stokes vector over the angle of σ1( and similarly for σ2) by using

cos 2σ1 = 2 cos2 σ1 − 1, (12)

sin 2σ1 = 2 sin σ1 cos σ1. (13)

a.kokhanovsky@vitrocisetbelgium.com
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2.2 The Vector Radiative Transfer with VLIDORT

The radiative transfer solver in the current UNL-VRTM is the Vector Linearized
Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 developed by
Spurr (2006). VLIDORT is a linearized pseudo-spherical vector discrete ordinate
radiative transfer model for multiple scattering of diffuse radiation in a stratified
multi-layer atmosphere. It computes four elements of the Stokes vector I for down-
welling and upwelling radiation at any desired atmospheric level. The VLIDORT
includes the pseudo-spherical approximation to calculate solar beam attenuation in
a curved medium. It also uses the delta-M approximation for dealing with sharply
peaked forward scattering. In addition, the VLIDORT package contains a kernel-
based BRDF implementation for both the scalar and vector surface reflection (Spurr
2004).

With its full linearization facility, VLIDORT simultaneously computes the Jaco-
bians of I with respect to any specified total-column or profile atmospheric quantity
or with respect to any surface property. Details on the linearization of the vector
radiative transfer solutions are addressed in Spurr (2006). As discussed in Sect. 2.8
below, such Jacobian calculations require specifications of linearized optical property
inputs.

With an atmospheric parameter noted by x , the Jacobian vector with respect to x
calculated by VLIDORT is given by

k = x
∂I
∂x

. (14)

Here, atmospheric-property Jacobians are normalized derivatives. It shoud be noted
that VLIDORT surface-property Jacobians are unnormalized. Essentially, the above
equation yields the derivatives of radiance I and DOLP with respect to x , i.e., ∂ I

∂x and
∂DOLP

∂x . While obtaining ∂ I
∂x is straightforward, ∂DOLP

∂x can be derived from Eq. (2) as

∂DOLP
∂x

= −DOLP
I

∂ I
∂x

+ Q ∂Q
∂x +U ∂U

∂x

I
√
Q2 +U 2

. (15)

2.2.1 Theoretical Basis of Vector RTE

Here we briefly describe the vector radiative transfer equation (RTE) solved by
VLIDORT in a theoretical context. Let I0 = [I0, 0, 0, 0]T denote the Stokes vector
for incident solar radiation at the top of the atmosphere (TOA) from the direction (θ0,
φ0), where θ0 and φ0 are the incident solar zenith and azimuth angles, respectively.
For a plane-parallel atmosphere, the vector RTE in atmospheric medium for the
Stokes vector I of light propagating in the viewing direction (θ , φ) can be written
(Hovenier et al. 2004; Mishchenko et al. 2002):

a.kokhanovsky@vitrocisetbelgium.com
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µ
∂I(τ, µ,φ)

∂τ
= I(τ, µ,φ) − J(τ, µ,φ;µ0,φ0), (16)

where the vector source term J in shortwave has the form:

J(τ, µ,φ;µ0,φ0) =
ω

4π

∫ 1

−1

∫ 2π

0
Z(µ,µ0,∆φ)I(τ, µ0,φ0)dφ0dµ0

+ ω

4π
Z(µ,µ0,∆φ)I0 exp(−τ/µ0).

(17)

Here, τ is the extinction optical depth measured from TOA, ∆φ = φ − φ0 is the
relative azimuth angle, µ and µ0 are cosines of θ and θ0, respectively, ω is the
single scattering albedo and Z is the phase matrix of scattering by the medium. It
should be noted that the relative azimuth angle for VLIDORT input is defined as
π − ∆φ for the case shown in Fig. 4. The first term on the right-hand side of Eq. (17)
representsmultiple scattering contributions,while the second indicates homogeneous
light source scattered by atmospheric medium from the attenuated solar beam.

Matrix Z relates scattering and incident light with respect to the meridian planes,
i.e., the plane containing surface normal and incident or scattered beam, which is also
the plane of reference defined for Stokes vector of incident light or scattered beam,
respectively. The equivalent matrix for Stokes vectors with respect to the scattering
plane is the phase matrix F. In general, F depends on the scattering angleΘ between
the incident and scattered beam. Matrix Z is related to F(Θ) through application of
two rotation matrices (Hovenier et al. 2004):

Z(µ,µ0,∆φ) = L(π − σ2)F(Θ)L(−σ1). (18)

Thefirst rotation over the angle−σ1 transforms the incident beam’s plane of reference
from incident meridian plane into scattering plane, and then the second rotation
over an angle of π − σ2 to transforms the scattered beam’s plane of reference from
the scattering plane to the scattered meridian plane. The rotation angles −σ1 and
π − σ2 can be determined from incident and viewing geometries. Indeed, such a
transformation is analogous to (but in the reverse seqnse) the rotation of Stokes
parameters fromviewmeridianplane to scatteringplane and then to the solarmeridian
plane. The rotation angles here have an opposite sign to those defined in Fig. 4. The
rotation matrix is same to the one defined by Eq. (4), which satisfies L(π − σ ) =
L(−σ ).

For a medium containing a collection of randomly oriented mirror-symmetric
particles (such as homogeneous spheres, spheroids, or cylinders), the scattering phase
matrix is a function of scattering angle only and has at most six independent elements
(Hansen and Travis 1974),

F(Θ) =

⎡

⎢⎢⎣

a1(Θ) b1(Θ) 0 0
b1(Θ) a2(Θ) 0 0

0 0 a3(Θ) b2(Θ)

0 0 −b2(Θ) a4(Θ)

⎤

⎥⎥⎦ . (19)
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By definition, a1(Θ) is the scalar scattering phase function, which satisfies

∫

4π
a1(Θ)dΩ = 4π, (20)

where Ω indicates the solid angle.
In solving the vector RTE with the discrete ordinates method in VLIDORT, it is

advantageous to expand the scattering phase matrix elements in terms of generalized
spherical function denoted by P j

m,n(cosΘ) (Hovenier et al. 2004):

a1(Θ) =
J∑

j=0

β j P
j
0,0(cosΘ), (21)

a2(Θ)+ a3(Θ) =
J∑

j=2

(α j + ζ j )P
j
2,2(cosΘ), (22)

a2(Θ) − a3(Θ) =
J∑

j=2

(α j − ζ j )P
j
2,−2(cosΘ), (23)

a4(Θ) =
J∑

j=0

δ j P
j
0,0(cosΘ), (24)

b1(Θ) =
J∑

j=2

γ j P
j
0,2(cosΘ), (25)

b2(Θ) = −
J∑

j=2

ε j P
j
0,2(cosΘ). (26)

The above expansion coefficients in these phase matrix elements can thus be
expressed by a matrix with six sets of “Greek” constants for each moment j , known
as the “Greek matrix” (Spurr 2006):

B j =

⎡

⎢⎢⎣

β j γ j 0 0
γ j α j 0 0
0 0 ζ j −ε j

0 0 ε j δ j

⎤

⎥⎥⎦ . (27)

Conversely, a set of Greek matrices B j for 0 ≤ j ≤ J can be used to reconstruct
the scattering phase matrix F(Θ). Reproduction of the phase matrix is less accurate
with fewer moments (J ). Note that the generalized spherical functions are additive,
i.e., the j th Greek matrix for the sum of two scattering matrices aF1(Θ)+ bF2(Θ)

is aB j
1 + bB j

2, given B j
1 as the j th Greek matrix for F1(Θ) and B j

2 for F2(Θ). This
feature is important when combining the scattering matrices of different media, for
instance, the molecular and particle scattering.
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2.2.2 VLIDORT Optical Property Inputs

Based on the above discussion, we can see that the input optical parameters required
to solve the RTE (16) are the layer optical depth τ , the layer single scattering albedo
ω, and the layerGreekmatrix ⟨B j ⟩ j=0...J at each atmospheric layer, plus the reflection
matrix R(µ,µ0,∆φ) of the underlying surface. These quantities are exactly the
inputs required by VLIDORT. Here,<> j=0,J denotes a set that consists of elements
having the similar expression as that inside <> but for j = 0 . . . J . Matrix R is
defined as the boundary condition at the bottom of the atmosphere, which relates the
downwelling and upwelling radiation fields at surface level (Sect. 2.7).

Here we use
[
τ,ω, ⟨B j ⟩ j=0...J

]
to denote the optical property set being supplied

to VLIDORT. Considering a cloud-free atmosphere, the solar radiation is attenuated
by molecular scattering, gaseous absorption, and aerosol scattering and absorption.
For a given layer, we thus have the optical property set given by

τ = τA + τR + τG, (28)

ω = τAωA + τR

τ
, (29)

⟨B j ⟩ j=0...J = τAωA

τAωA + τR
⟨B j

A⟩ j=0...J +
τR

τAωA + τR
⟨B j

R⟩ j=0...J , (30)

where τA, τR, and τG are optical depth of aerosol extinction, Rayleigh scattering of
air density fluctuations, and gaseous absorption, respectively.ωA is the aerosol single
scattering albedo. ⟨B j

A⟩ j=0...J and ⟨B j
R⟩ j=0...J are the sets of Greekmatrix coefficients

that characterize the scattering phase matrix elements for aerosol particles FA(Θ)

and Rayleigh scattering FR(Θ), respectively. The forward modeling development
thus requires the computation of single scattering properties for aerosols and air
density fluctuations, a rigorous treatment for absorption of trace gases, an accurate
representation of reflectance/polarization by surface, and the realistic simulation of
polarimetric radiative transfer.

To enable VLIDORT to compute Jacobians, additional inputs are needed— these
are the linearized versions of set of optical property inputs, that is, the partial deriva-
tives of these inputs with respect to the desired Jacobian parameter(s). Specification
of linearized inputs is dealt with in Sect. 2.8.

2.3 Atmospheric Profiles

Here, the term “atmospheric profile” refers to vertical distribution of air temperature,
pressure, and air number density at each atmospheric layer. In UNL-VRTM, the
profile also considers the gaseous and particle constituents at each atmospheric layer,
including mixing ratio of trace gases, and concentration of aerosols (or clouds) in
each atmospheric layer.
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We have implemented profiles for six standard atmospheres from the database of
McClatchey et al. (1972): (1) Tropical, (2) Mid-Latitude Summer, (3) Mid-Latitude
Winter, (4) High-Latitude Summer, (5) High-Latitude Winter, and (6) US standard
1976. Each atmosphere has vertical profiles of pressure, temperature, and mixing
ratios for eight gases (H2O, CO2, O3, N2O, CO, CH4, O2, and NO). From the same
database, we have also implemented a set of common profiles for other 14 trace gases:
SO2, NO2, NH3, HNO3, OH, HF, KCl, HBr, HI, ClO, OCS, H2CO, HOC1, and N2.
Figure5 shows the mixing ratio of these 22 gases for the Mid-Latitude Summer
atmosphere.

Starting with this set of standard atmospheres, users have the flexibility to scale
the columnar amount of each gas by setting a scaling factor in the model input. For
instance, although the CO2 mixing ratio is 330 ppm for these standard atmospheres,
this value should really be set to a more modern concentration level (e.g., about
400 ppm in 2015) when simulating IR observations in the CO2 bands. Alternatively,
the user may specify the pressure-temperature profile and mixing ratios of any gases
from other data sources, such as atmospheric sounding data or global model simu-
lations.

The vertical distribution of the particulate medium in the atmosphere also needs
to be defined. This can be supplied either by the user as a dedicated model input,
or it can defined by one of a set of pre-specified aerosol profile types. As we will
see in Sect. 2.6, the particulate medium may have one or two modes, with vertical
loading profiles treated independently for each mode. We have implemented three
aerosol-loading vertical profiles inUNL-VRTM; these include uniform, exponential-
decreasing, and quasi-Gaussian profile shapes. For the uniform profile, aerosols

Fig. 5 Profile of trace gas mixing ratios for the Mid-Latitude Summer atmosphere
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are assumed evenly distributed with height. The AOD profile for the exponential-
decreasing case follows the form

∫ +∞

z
τA(z)dz = τa0 exp

(
− z
Hs

)
(31)

where τa0 is the columnar AOD, and Hs is a scale height parameter. The quasi-
Gaussian profile is derived from a generalized distribution function (Spurr andChristi
2014)

τA(z) = C
exp(−γ |z − zpeak|)

[1+ exp(−γ |z − zpeak|)]2
(32)

where C is a constant related to τa0, γ is related to the half-width constant σ through
γ = ln (3+

√
8)/σ , and zpeak is the height with peak aerosol concentration.

2.4 Gaseous Absorption

The absorption optical depth (τG) of any atmospheric layer for K different trace
gases is given by

τG = ∆H
K∑

i=1

Ngas,iσG,i (T, P) (33)

where ∆H is the thickness (cm) of the layer, Ngas,i is the number density of ith gas
(molec cm−3), and σG,i is the corresponding absorption cross section (cm2molec−1),
a function of temperature and pressure.

UNL-VRTM currently accounts for absorptions by a total of 22 trace gases
(Sect. 2.3). The determination of σG for each gas is based on three data sources,
namely, the HITRAN (2012) line-spectroscopic database for all of these 22 gases
(Rothmanet al. 2009, 2013); the cross-section library complementary toHITRANfor
O3, NO2, SO2, O2–O2, and H2CO in UV and visible (Orphal and Chance 2003); con-
tinuum absorption by H2O, CO2, O2, and N2 modeled with the MT_CKD approach
(Clough et al. 1989; Mlawer et al. 2012). Below, we briefly review the calculation of
cross sections from HITRAN line spectroscopy data, using an accurate Voigt profile
code kindly provided by Dr. Kelly Chance.

The HITRAN database provides line-spectroscopic absorption parameters that
account for the temperature correction of line intensity and pressure-shift correction
of line position. These parameters include resonant frequency ν0 in units of cm−1,
the spectral line intensity per absorbing molecule S (cm−1cm2molec−1), the Lorentz
line width parameter α0 (cm−1atm−1), and the energy of lower state Eη (cm−1). In the
lower atmosphere where Lorentz broadening dominates, the extinction cross section
for a gas molecule (cm2molec−1) at a specific frequency ν is (Liou 2002):
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kα(ν) =
S
π

α

(ν − ν0)2 + α2
= S f (ν − ν0), (34)

where α is the half width of the line at half-maximum (HWHM) and f (ν − ν0) is
called shape factor of a spectral line. By definition,

∫ ∞

−∞
k(ν)dν = S. (35)

In the HITRAN database, values for α0 and S are stored for reference values of pres-
sure 1013.25 hPa and temperature T0 296.15 K. Line intensity at other atmospheric
pressures and temperatures is calculated through

S(T ) = S(T0)
Q(T0)
Q(T )

e−c2Eη/T

e−c2Eη/T0

1 − e−c2ν0/T

1 − e−c2ν0/T0
, (36)

where c2 = hd/k = 1.4388 (cm K) is the second radiation constant. Here h, d, and
k are the Planck constant, speed of light, and the Boltzmann constant, respectively.
The partition function Q(T ) is determined from third-degree Lagrange interpolation
of the HITRAN partition sums database, which was reorganized and shortened to
include only the Earth atmospheric temperature range of 148–342 K.

The calculation of α also needs to account for the effect of temperature and
pressure:

α(p, T ) =
(
T0
T

)n
[αair(P0, T0)(p − ps)+ αself(P0, T0)ps] , (37)

where αair and αself are the HWHM for air broadening and self-broadening, respec-
tively; p and ps are the air pressure and partial pressure for that gas molecule (both
normalized to the standard pressure P0), respectively. For most applications, αself can
be assumed equal to αair, and hence:

α(p, T ) =
(
T0
T

)n
αair(P0, T0)p. (38)

From Eqs. (36) and (38), one can compute the absorption cross-section of each
gas at any temperature and pressure:

k(ν) = S(T )
π

α(p, T )

[ν − (ν0 + δp)]2 + α2(p, T )
, (39)

where δ is the air-broadened pressure shift (in the units of cm−1atm−1) fromHITRAN
dataset. Again, p is pressure normalized to the reference 1013.25 hPa.

Equation (38) can only be applied to the lower atmosphere. In the upper atmo-
sphere, the Doppler broadening becomes important. The width for Doppler broad-
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ening is:

αD = ν0

c

(
2kT
m

) 1
2

= 4.30140 × 10−7
(
T
M

) 1
2

, (40)

whereM is themolecular weight, k is the Boltzmann constant, andm is themolecular
mass The HWHM for Doppler broadening is

√
2αD and the molecular absorption

cross section due to Doppler broadening is

kαD(ν) =
S

αD
√

π
e−
(

ν−ν0
αD

) 2
. (41)

Lorentz and Doppler line shapes are convolved in the Voigt profile (Liou 2002):

f (ν − ν0) =
1

αD
√

π

y
π

∫ ∞

−∞

1
y2 + (x − t)2

e−t2dt, (42)

where y = α/αD and x = (ν − ν0)/αD. In our code, the calculation of Voigt profiles
follows the method of Gautschi (1970).

2.5 Rayleigh Scattering

The Rayleigh scattering optical depth (τR) at a given wavelength in any atmospheric
layer is computed via

τR = Nair∆HσR, (43)

where Nair is the air molecular number density of that layer (molec cm−3), and
∆H is the layer thickness (cm), and σR is the Rayleigh scattering cross-section
(cm2 molec−1) computed following (Bodhaine et al. 1999):

σR = 24π3(n2s − 1)2

λ4N 2
s (n2s + 2)2

(
6+ 3ρ
6 − 7ρ

)
. (44)

Here, ns and Ns respectively are the refractive index andmolecular number density of
standard atmosphere at the temperature of 288.15K and pressure of 1013.25 hPa, λ
is the wavelength (in centimeters) of incident light, and ρ is the depolarization factor
related to the molecular anisotropy. The term (6+ 3ρ)/(6-7ρ) is known as the King
or F factor. Indeed, ρ is the ratio of light intensity parallel and perpendicular to the
plane of scattering. For isotropic Rayleigh scattering ρ = 0, and in general ρ ≈ 0.03
for air. As will be shown, ρ is determined by the King factor values of the primary
gases in the atmosphere.
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In our tool, we set Ns as 2.546899 × 1019 molec cm−3 and parameterize ns as a
function of λ (Bodhaine et al. 1999):

ns = 1+
[
10−8 ×

(
8060.51+ 2480990

132.274 − λ−2
+ 17455.7

39.32957 − λ−2

)]

×
[
1+ 0.54(CCO2 − 0.0003)

]
.

(45)

Note in Eq. (45), the units of λ is micrometers (µm). The term in the first square
bracket on the right is the refractive index of dry air with the mixing ratio of CO2 of
300 ppm for the standard atmosphere; the term in the second square bracket accounts
for the change of air refractive index as a function of CO2 mixing ratio, expressed
by CCO2 in the units of parts per volume.

The F-factor of air is computed as sum of F-factors for the four most abundant
gases (i.e., N2, O2, Ar, and CO2) in the atmosphere weighted by their corresponding
mixing ratios (Bodhaine et al. 1999):

Fair =
78.084FN2 + 20.946FO2 + 0.934FAr + 100CCO2FCO2

78.084+ 20.946+ 0.934+ 100CCO2

(46)

where FN2=1.034+ 3.17 × 10−4λ−2, FO2 = 1.096+ 1.385 × 10−3λ−2 + 1.448 ×
10−4λ−4, FAr = 1.0, and FCO2 = 1.15, and λ is expressed in the units of µm. From
Fair one can determine the depolarization factor ρ, i.e., ρ = (6Fair − 6)/(7Fair + 3).

Note that in Eq. (44), the refractive index and molecular number density do not
need to be specified as parameters for the standard atmosphere, as long as they are
consistent and expressed for the same temperature and pressure. However, as shown
by Penndorf (1957), (n2s − 1)2(n2s + 2)−2 is proportional to N 2

s regardless of whether
ns and Ns are values for the standard atmosphere or not. Hence, σR computed from
Eq. (44) for the standard atmosphere can be used for most optical applications that
deal with ambient atmospheres with varying temperature and pressure (Bodhaine
et al. 1999).

The phase matrix for Rayleigh scattering is (Hansen and Travis 1974):

FR(Θ) = a

⎡

⎢⎢⎣

3
4 (1+ cos2 Θ) − 3

4 sin
2 Θ 0 0

− 3
4 sin

2 Θ 3
4 (1+ cos2 Θ) 0 0

0 0 3
2 cosΘ 0

0 0 0 3b
2 cosΘ

⎤

⎥⎥⎦

+ (1 − a)

⎡

⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ , (47)

where Θ is the scattering angle, and parameters a and b accounts for molecular
anisotropy:
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a = 1 − ρ

1+ ρ/2
, b = 1 − 2ρ

1 − ρ
, (48)

Neglecting molecular anisotropy implies that a and b are unity for ρ = 0, and Eq.
(47) reduces to the phase matrix for isotropic Rayleigh scattering. With the aid of
Eqs. (21)–(26), one can show that FR(Θ) is fully represented by a 3-term spherical-
function expansion using the following three “Greek”matrices (Hovenier et al. 2004;
Spurr 2006):

⟨B j
R⟩ j=0...2 =

⎡

⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

j=0

,

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 3(1−2ρ)

2+ρ

⎤

⎥⎥⎦

j=1

,

and

⎡

⎢⎢⎢⎣

1−ρ
2+ρ

−
√
6(1−ρ)
2+ρ

0 0

−
√
6(1−ρ)
2+ρ

6(1−ρ)
2+ρ

0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎥⎦

j=2

. (49)

2.6 Aerosol Single Scattering

Aerosol single scattering properties necessary for radiative transfer calculations
include the aerosol optical depth τA that is related to the extinction efficiency factor
Qext, the aerosol single scattering albedo ωA, and the scattering phase matrix FA(Θ)

as represented by the set of “Greek” matrices ⟨B j
A⟩ j=0...J . Calculation of these prop-

erties is done using a Linearized Mie (LMIE) scattering code for spherical particles
and a Linearized T-matrix (LTMATRIX) scattering code for non-spherical convex
and axially symmetric particles (Spurr et al. 2012). The LMIE code originates from
the Mie code of de Rooij et al. (1984), and the LTMATRIX code originates from the
T-Matrix code developed by Mishchenko and Travis (1998); both codes include a
full linearization capability as implemented by Spurr et al. (2012).

Shared inputs for both codes are the parameters describing aerosol microphysics:
the complex refractive index (mr + im i) at spectral wavelengths and the particle
size distribution (PSD) parameters. The codes have several analytical functions that
are commonly used to model natural aerosol number PSDs; these include the so-
called ‘gamma’, ‘modified gamma’, ‘lognormal’, and ‘power law’ size distributions
(Mishchenko and Travis 1998; Spurr et al. 2012). Each PSD function is characterized
by two or three non-linear “PSD parameters”. Expressions for these PSD functions
and their associated PSD parameters are presented in Appendix 1. For non-spherical
particles, the specified PSD is interpreted as surface-area equivalent spheres in the
linearized T-matrix calculation, regardless of particle shape.
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In the present version of UNL-VRTM, aerosol particles are described by one
or two size modes, with each mode following one of after-mentioned PSDs. For
instance, studies have shown that the size range of aerosol particles often follows a
bi-modal lognormal distribution:

dV
d ln r

=
2∑

i=1

V i
0√

2π ln σ i
g

exp

[

− (ln r − ln r iv)
2

2 ln2 σ i
g

]

, (50)

where V0, rv, and σg are the total volume concentration, geometric volume median
radius, and geometric standard deviation, respectively. The superscript i indicates the
size mode. Particle size ranges from 0.01 to 10 µm for the fine mode and from 0.05
to 20 µm for the coarse mode will cover>99.9% of the total volume. An advantage
of the lognormal distribution is that standard deviations for the number, area, and
volume PSD functions are identical, allowing that the median radii for these PSD
functions to be converted from one to another (Seinfeld et al. 2006). For instance,
the volume median radius rv relates to the number geometric median radius rg by
rv = rg exp (3 ln2 σg) (see Appendix 1 for details.)

The LMIE and LTMATRIX codes compute the aerosol extinction efficiency fac-
tor Qext, single scattering albedo ωA, and phase matrix F(Θ), as well as partial
derivatives of these quantities with respect to input parameters including reff, veff,
mr, andm i. The phase matrix and its derivatives are expressed in terms of the expan-
sion coefficients ⟨B j

A⟩ j=0...J for each moment j . LetΛΛΛ denotes the vector of aerosol
microphysical parameters,ΛΛΛ = [V0, reff, veff,mr,m i]T , and M the vector of aerosol
optical parameters,M = [τA,ωA, ⟨B j

A⟩ j=0...J ]T , where τA is related to Qext through
τA = 3V0Qext

4reff
. The LMIE/LTMATRIX codes act as operators mapping vectorΛΛΛ toM.

The Jacobian matrix of M with respect to ΛΛΛ, or ∂M
∂ΛΛΛ

, is calculated by means of the
LMIE/LTMATRIX linearization capability.

2.7 Surface Reflection Models

The intrinsic reflectance properties of surface can be represented by a 4 × 4 reflec-
tion matrix R(µ,µ0,∆φ), which is a function of incident angle, reflected angle,
and spectral wavelength. It describes the connection between the Stokes vector of
reflected and incident light at the atmosphere-surface boundary:

Is(µ,φ) = R(µ,µ0,∆φ)Iincs (µ0,φ0), (51)

where Iincs (µ0,φ0) is the Stokes vector of the incident beam to the surface, with cosine
of zenith angleµ0 and azimuth angle φ0, Is(µ,φ) is the Stokes vector of the reflected
beam with geometry specified by µ and φ, and ∆φ is the relative azimuth angle. The
reflection matrix is actually analogous to a scattering matrix in the redistribution of
incident radiation fields to all directions in the upwelling hemisphere.
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Fig. 6 Reflectance spectra obtained from the ASTER Spectral Library (Baldridge et al. 2009) for
various surface types

When the incident radiation is unpolarized, the first three Stokes-vector elements
of the reflected beam can be expressed by (Kokhanovsky et al. 2015; Litvinov et al.
2011):

Is = R11 I incs , Qs = R21 I incs , and Us = R31 I incs . (52)

Here, the element R11 of the matrix R is the surface total reflectance, which is often
referred as bidirectional reflectance distribution function (BRDF). The elements R21

and R31 describe the surface polarized reflectance, and the surface linearly polarized
reflectance is given by

Rp =
√
R2
21 + R2

31. (53)

Rp is often called surface bidirectional polarization distribution function (BPDF)
(Litvinov et al. 2011). Studies have shown that the BPDF for land surfaces is gen-
erally rather small and is “spectrally neutral” (Litvinov et al. 2011; Maignan et al.
2009). Most empirical BPDF models are based on the Fresnel surface reflection
(Appendix 2).

For a Lambertian surface, incident light is scattered equally in all directions in
the upwelling hemisphere. In this case, the BRDF is isotropic. In UNL-VRTM, we
have included a set of reflectance spectra obtained from the ASTER Spectral Library
(Baldridge et al. 2009); Fig. 6 shows some of these spectra for typical surface types
(water, vegetation, and snow).

VLIDORT (version 2.6) has a supplementary module for the specification of
surface BRDF in terms of a linear combination of (up to three) semi-empirical kernel
functions (Spurr 2004). A full list of these functions is presented in Appendix 2. The
BRDF kernels applicable to vegetation canopy include: the Ross-thin and Ross-
thick kernels that are based on volume scattering models of light reflectance (Ross
1981); the Li-sparse and Li-dense (1992), and the Roujean et al. (1992) kernels that
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are based on geometric-optical modeling, and the Rahman (1993) and Hapke (1993)
kernels. VLIDORTalso incorporated the one-parameterMaignan-2009BPDFmodel
developed by Maignan et al. (2009), which was derived from analyses of several
years of land surface POLDER/PARASOL measurements and can be applicable to
land surface. Additionally, VLIDORT has an ocean surface glitter kernel based on
the Cox-Munk model (Cox et al. 1954) and a vector glitter kernel based on the
description in Mishchenko and Travis (1997).

UNL-VRTM has incorporated all of those BRDF/BPDF kernels. For instance,
the commonly used MODIS-type BRDF model is a linear combination of isotropic
(Lambertian), Ross-thick Kvol, and Li-sparse Kgeo kernels (Lucht et al. 2000;Wanner
et al. 1995),

ρR(µ,µ0,∆φ) = fiso + fvolKvol(µ,µ0,∆φ)+ fgeoKgeo(µ,µ0,∆φ). (54)

Expanded expressions for Kvol and Kgeo appear in Wanner et al. (1995) and in
Appendix 2 of this chapter. The MODIS BRDF products, reported every 16days
at a 1km resolution (Lucht et al. 2000), supply the corresponding three coefficients
( fiso, fvol, and fgeo) in the first 7 MODIS bands.

Fig. 7 Polar plots of the angular distribution of a MODIS-type BRDF at 490 nm (a) and 670 nm
(b) and a Maignan-2009 BPDF (c) for a vegetated surface. Adapted from Hou et al. (2018)
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Figure7a, b illustrates a simulated MODIS-type BRDF at 490 and 670 nm, and
Fig. 7c shows a polar plot for the Maignan-2009 BPDF (assumed to be independent
of spectral wavelength). The simulations are for a vegetation surface at a solar zenith
angle of 40◦. The so-called “hot spot” of BRDF is clearly seen in the backscattering
direction of the illuminating source. In contrast, BPDF values are smallest in the
backscattering direction and increase with reduced scattering angle.

Finally, the VLIDORT supplementary BRDF module is fully linearized (see
Appendix 2). It provides partial derivatives of BRDFs not only with respect to the
kernel weighting factors, but also with respect to kernel parameters (such as the wind
speed for glitter reflectance). As a result, VLIDORThas the capability to calculate the
Jacobians of Stokes parameters with respect to those BRDF and BPDF parameters
(Spurr 2004).

2.8 Jacobian Capability

This section describes the methods by which UNL-VRTM calculates Jacobians of I
with respect to various aerosol related parameters (including τA, ωA, BA, refractive
index, PSD parameters, and aerosol vertical profile) and trace gas parameters (τG
and mixing ratio). This capability is based up on the direct coupling of the linearized
radiative transfer model (VLIDORT) with analytical linearization output from other
forward modeling components.

2.8.1 Jacobians with Respect to Aerosol Parameters

As discussed in Sect. 2.2.2, computation of the Stokes vector in VLIDORT requires
input of optical property sets [τ,ω, ⟨B j ⟩ j=0,J ] for each atmospheric layer L , as
noted in Eqs. (28)–(30). For ease of exposition, we will drop the layer index L in the
following.

VLIDORT also generates Jacobians with respect to layer-integrated single scat-
tering properties in each atmospheric layer as well as column-integrated proper-
ties, while on the other hand the LMIE and LTMATRIX codes generate weighting
functions of aerosol scattering properties with respect to microphysical aerosol phys-
ical parameters. Thus an integrated use of VLIDORT and LTMATRIX/LMIE can, in
principle, provide the Jacobians of Stokes parameterswith respect to both aerosol sin-
gle scattering properties aswell as aerosolmicrophysical parameters (as expressed by
Eqs. (14) and (15)). From a practical standpoint, the VLIDORT calculation of Jaco-
bians of any Stokes parameter ξ with respect to any aerosol parameter x proceeds
according to
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Table 1 Elements of the transformation vector for various aerosol single scattering parameters

x φx ϕx ΨΨΨ
j
x

τA
τA
τ

τA
τ

(
ωA
ω − 1

)
⎧
⎨

⎩

ωAτA
ωτ

(
B j
A

B j − 1
)

for j < 3

τR
ωτ for j ≥ 3

ωA 0 τAωA
τAωA+τR

Same as above

Bl
A 0 0

⎧
⎪⎪⎨

⎪⎪⎩

ωAτAB
j
A

ωAτAB
j
A+τRB

j
R
for l = j < 3

1 for l = j ≥ 3
0 for l ̸= j

x
∂ξ

∂x
= x
[

∂ξ

∂τ
,

∂ξ

∂ω
, ⟨ ∂ξ

∂B j
⟩ j=1,J

] [
∂τ

∂x
,
∂ω

∂x
, ⟨∂B

j

∂x
⟩ j=1,J

]T

=
[
τ

∂ξ

∂τ
,ω

∂ξ

∂ω
, ⟨B j ∂ξ

∂B j
⟩ j=1,J

] [
φx ,ϕx , ⟨ΨΨΨ j

x ⟩ j=1,J
]T

.

(55)

The first square bracket on the right-hand side of Eq. (55) contains quantities
computed internally by VLIDORT, while the second “transformation vector” must
be supplied by the user and is defined as:

φx =
x
τ

∂τ

∂x
; ϕx =

x
ω

∂ω

∂x
; ΨΨΨ j

x =
x
B j

∂B j

∂x
. (56)

As we are interested in aerosol parameters, this transformation vector can be
further expanded as

[
φx ,ϕx , ⟨ΨΨΨ j

x ⟩ j=1,J
]T = ΠΠΠ

[
φ′
x ,ϕ

′
x , ⟨ΨΨΨ ′ j

x ⟩ j=1,J
]T

, (57)

where

φ′
x = x

∂τA

∂x
, ϕ′

x = x
∂δA

∂x
, and ΨΨΨ ′ j

x = x
∂B j

A

∂x
, (58)

andΠΠΠ is a transformation matrix expressed by

ΠΠΠ =

⎡

⎢⎣

1
τ

000 000
− 1

τ
1

δA+τR
000

000 ⟨ B j
A−B j

R
B j (δA+τR)

⟩ j=1,J ⟨ δA
B j (δA+τR)

⟩ j=1,J

⎤

⎥⎦ . (59)

Here, δA is the scattering optical depth of aerosols. A detailed derivation of thematrix
ΠΠΠ is found in Appendix 3. Hence, the transformation vector for calculating Stokes
profile Jacobians with respect to τA, ωA, Bl

A can be obtained by combining Eqs. (57)
and (59), and the components of this vector are listed in Table1.
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In an atmosphere where both fine (denoted by superscript ‘f’) and coarse (denoted
superscript ‘c’) aerosol particles co-exist, the bulk aerosol optical properties may be
derived by assuming external mixing regime:

⎧
⎪⎨

⎪⎩

τA = τ f
A + τ c

A
δA = δfA + δcA
B j
A = δfA+δcA

δfAB
f, j
A +δcAB

c, j
A

(60)

We can generate the transformation vectors (as listed in Table 2) for any of the
following parameters: τ f

A,ω
f
A,V

f
0 ,m

f
r,m

f
i , r

f
g,σ

f
g, ε

f, H f, and τ c
A,ω

c
A,V

c
0 ,m

c
r ,m

c
i , r

c
g ,σ

c
g ,

εc, and H c. Here, rg, σg, and H denote the median and standard deviation of the PSD
(e.g., two parameters in the lognormal aerosol number distribution), and the scale
height of aerosol extinction, respectively. V0 is the aerosol volume concentration and
ε the shape factor of the non-spherical particle. Details of the algebra for deriving
the transformation vectors may be found in Appendix 3.

Analytical formulas forφ′
x ,ϕ

′
x , andΨΨΨ

′ j
x for coarsemode aerosol parameters are the

same as their counterparts for fine-mode aerosols; we need only replace superscript
‘f’ with ‘c’ in the Table2 entries. Jacobians with respect to the fine mode fraction,
either in terms of AOD (fmfτ ) or in terms of the volume concentration (fmfv), can be
derived from the corresponding Jacobians with respect to modal AOD and volume,
respectively:

fmfτ
∂ξ

∂fmfτ
= τ f

A
∂ξ

∂τ f
A

− fmfτ
1 − fmfτ

τ c
A

∂ξ

∂τ c
A

(61)

fmfv
∂ξ

∂fmfv
= V f

0
∂ξ

∂V0
f − fmfv

1 − fmfv
V c
0

∂ξ

∂V0
c (62)

Detailed derivations of these VLIDORT inputs may be found in Appendix3, and
a comprehensive validation of these Jacobian calculations is given in Sect. 2.9.1

2.8.2 Jacobians with Respect to Trace Gases

With some derivations using Eqs. (28)–(30), inputs [denoted in Eq. (56)] to VLI-
DORT for calculating the Jacobian of I with respect to τG at any atmospheric layer
are given by

φx =
τG

τ
; ϕx = −τG

τ
; ΨΨΨ j

x = 0 for j = 0 . . . J. (63)

Here, τG is total absorption optical depth of all trace gases in an atmospheric layer
as calculated in Eq. (33).

1Expressions are shown only for fine-mode parameters; expressions for coarse-mode parameters
are the same but with superscripts replaced by ‘c’.
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Table 2 Elements of the transformation vector for various microphysical parameters of fine and
coarse mode aerosols

x φ′
x f ϕ′

x f ΨΨΨ
′ j
x f

τ fA τ fA δfA
δfA
τA
(Bf j

A − B j
A)

ωA 0 δfA
δfA
τA
(Bf j

A − B j
A)

V f
0

3V f
0Q

f
ext

4r feff

3V f
0Q

f
sca

4r feff

δfA
τA
(Bf j

A − B j
A)

mf
r,m

f
i τ fA

x f

Qf
ext

∂Qf
ext

∂x f δfA
x f

Qf
sca

∂Qf
sca

∂x f
ϕ′
xf

δfA
(Bf j

A − B j
A)+ x f ∂Bf j

A
∂x f

r fg, σ
f
g, ε

f τ fA

(
x f

Qf
ext

∂Qf
ext

∂x f − x f

r feff

∂r feff
∂x f

)
δfA

(
x f

Qf
sca

∂Qf
sca

∂x f − x f

r feff

∂r feff
∂x f

)
ϕ′
xf

δfA
(Bf j

A − B j
A)+ x f ∂Bf j

A
∂x f

H f H f ∂τA
∂H f φ′

x fω
f
A

δfA
τA
(Bf j

A − B j
A)

To obtain the Jacobian with respect to mixing ratio qi of a gas i . qi in units of
ppm, we use the definition qi = 106Ngas,i/Nair, where Ngas,i and Nair are the averaged
density of that gas and air molecules in the atmospheric layer, respectively. Then
Eq. (33) becomes

τG = 10−6Nair∆H
K∑

i=1

qiσG,i (T, P). (64)

One can derive the Jacobian with respect to qi as follows:

qi
∂I
∂qi

= τG,i

τG

(
τG

∂I
∂τG

)
. (65)

2.9 Model Benchmarking and Verification

Figure8a shows the downward solar spectral irradiance at the top-of-atmosphere
and at the surface for a solar zenith angle of 30◦. Spectral regions dominated by gas
absorption can be clearly identified, including the O3 Hartley-Huggins bands in the
UV, the O2 B band (0.69µm) and O2 A band (0.76µm), as well as a number of water
vapor bands. Calculations shown in Fig.8 were performed at a spectral resolution
of 0.01 nm. In general, this resolution is high enough to resolve fine structure in
gas absorptions. In the UV below 300 nm, and in parts of the O2 A and O2 B
bands, whole-atmosphere gas absorption optical depths can reach 50 or more, and
the downward irradiance is virtually zero at the ground (Fig. 8b). The inset in Fig. 8b
shows a close-up view of the fine structure in absorption optical depth for the O2 A
band, with dual peaks centered at 0.761 µm (R branch) and 0.764 µm (P branch),
and a deep, narrow valley around 0.762 µm (Q branch).
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(a)

(b)

(c)

(d)

Fig. 8 Some benchmark simulations by the UNL-VRTM: a Downward solar spectral irradiance
at the TOA and the surface for solar zenith angle 30◦. b Total-atmosphere gas absorption optical
depth in the range 0.2–0.8 µm. c Same as b but for 0.8–4 µm. d Optical depth of SO2 and NO2
in polluted cases. Also shown in b and c are optical depths computed with the Santa Barbara
DISORT Atmospheric Radiative Transfer (SBDART) model (Ricchiazzi et al. 1998). The mid-
latitude summer atmospheric profile is assumed. Figure adapted from Wang et al. (2014)
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Fig. 9 UNL-VRTM benchmark simulations (red) in a typical IR ‘atmosphere window’, com-
pared with those from MODTRAN5 (blue). The three panels show the transmission (top), TOA
radiance (I , middle), and brightness temperature (BT, bottom), respectively. The used spectral res-
olution (FWHM) and sampling interval are 0.4 and 0.1cm−1 for UNL-VRTM and 2 and 1cm−1 for
MODTRAN5, respectively. The view zenith angle is 0◦. Simulations are based on the “Tropical”
standard atmosphere with a surface temperature of 299.7 K. Gases are labeled according to their
major absorption signatures

Also of note is significant absorption of SO2 and NO2 in UV and blue wavelength
regions respectively (Fig. 8d). In urban regions, high SO2 and NO2 can together con-
tribute optical depths of around 0.03–0.07 (Fig. 8d). Hence, in order to take advantage
of low surface reflectance in the UV and the use of deep-blue wavelengths for the
retrieval of AOD in urban regions, it is critical to treat absorption by SO2 and NO2.
In contrast, calculations performed at moderate spectral resolution (such as those
from SBDART (Ricchiazzi et al. 1998), shown as the blue lines in Fig. 8b, c) do not
resolve fine-structure details, for example sometimesmissing the absorption lines for
SO2 or NO2, and in general producing significant underestimation of optical depths
in the O2A band.

Figure9 shows UNL-VRTM andMODTRAN5 simulations of transmission (top),
TOA radiance (I , middle), and brightness temperature (BT, bottom) as seen from
space in the IR ‘atmospheric window’ from 750 to 1250cm−1. MODTRAN5 (MOD-
erate resolution atmospheric TRANsmission) is a radiative transfer model developed
and maintained by Spectral Sciences Inc. and the Air Force Research Laboratory
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(a) (b)

(c) (d) (e)

Fig. 10 Validating UNL-VRTM for calculating the degree of linear polarization (−Q/I ) of down-
ward radiation for a pure Rayleigh atmosphere: a computed by UNL-VRTM for the case analyzed
in Fig. 5.7 of Coulson et al. (1988), which is replicated here in panel (b). c–e shows the comparisons
of I , Q, and U computed by Coulson et al. (1960) and those from UNL-VRTM. In a and b, As
represents the surface albedo value. In c–e, the calculation is for τ = 1.0, surface albedo is 0.25,
cos θ0 = 0.8, and for 8 different viewing angles. Figure adapted from Wang et al. (2014)

(Berk et al. 2004). The spectral resolution (FWHM) and sampling interval are 0.4
and 0.1cm−1 for UNL-VRTM and 2 and 1 cm−1 for MODTRAN5, respectively.
The view zenith angle is 0◦. Simulations for the Tropical standard atmosphere with
a surface temperature of 299.7K take into account line absorption of H2O, CO2, O3,
CH4, and N2O, and continuum absorption of H2O and CO2. Clearly, UNL-VRTM
and MODTRAN5 agree closely with each other in both the simulated transmission
and radiance (or BT). The main difference is that the MODTRAN5 simulation uses
a coarser spectral resolution then results in much smoother spectra.

Figure10 shows the calculation for DOLP of downward radiation in a pure
Rayleigh scattering atmosphere. The solid blue line in Fig. 10a (dotted line in
Fig. 10b) reproduces the theoretical results shown in Fig. 5.7 of (Coulson et al. 1988).
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(a) (b) (c)

(d) (e) (f)

Fig. 11 Validation of UNL-VRTM for calculating DOLP (−Q/I ) of upwelling radiation for a Mie
scattering atmosphere, against the benchmarked data in Tables3–10 of Garcia and Siewert (1989)
for the same atmospheric conditions of aerosol scattering. Gas absorption and Rayleigh scattering
are excluded. Shown here are I and Q values reported in Garcia and Siewert (1989) for 9 view
angles (with cosine values from 0.1 to 0.9 at equal spacing of 0.1) and 3 relative azimuth angles (0,
π/2, andπ ), a total of 27 data points. ForU and V , values are reported for the same 9 viewing angles
but for one relative azimuth angle (π/2) only. The calculation is performed at 951nm and column τ
of 1.0, with lognormal aerosol size distribution parameters reff = 0.2, veff = 0.07, refractive index
mr = 1.44, and single scattering albedo 0.99. Figure adapted from Wang et al. (2014)

The plot was used to interpret the DOLP measured at Mauna Loa Observatory on
February 19, 1977. Furthermore, Fig. 10a shows that the anisotropy in Rayleigh
scattering reduces the peak DOLP by 5% (e.g., the difference between the green and
red lines) at 0.7 µm. Surface reflection and its concomitant increase of atmosphere
scattering will decrease the DOLP of downward radiation. An increase of surface
reflectance from 0 to 0.25 decreases the peak DOLP by about 10%.

We also conducted a quantitative validation for a Rayleigh scattering scenario by
following a VLIDORT validation (Natraj and Hovenier 2012). As seen in Fig. 10c–e,
I , Q, andU components computed with UNL-VRTM differ from their counterparts
found in the tables by Coulson et al. (1960) by average (relative) deviations of
1.9 × 10−4 (0.05%), 2 × 10−5 (0.14%), and 4 × 10−5 (0.03%), respectively. These
differences are similar to the values 2.1 × 10−4, 9 × 10−5, and 7 × 10−5 identified
by Evans and Stephens (1991).

Figure11 shows benchmark calculations of four Stokes parameters for radiative
transfer in an aerosol-only medium. Garcia and Siewert (1989) documented their
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results for unpolarized incident radiation at 951nm and cos θ0 of 0.2, a Lambertian
reflectance 0.1, with aerosols having a gamma-function PSD with reff 0.2 µm and
veff 0.07, and a refractive index yielding an aerosol single scattering albedo of 0.99.
Compared to the results in Garcia and Siewert (1989), the Stokes parameters com-
puted by UNL-VRTM show relative differences of less than 0.6%, with maximum
relative differences (at certain viewing geometries) of up to 2% for Q and 3.8% for
V . The DOLP computed from the UNL-VRTM (with 15 streams for the hemisphere)
and documented by Garcia and Siewert (1989) (with 3 streams) differ on average
by 0.5%, with a maximum relative difference of 0.65%. The results are consistent
with the VLIDORT validation that used the same aerosol case (Spurr 2008; Spurr
and Christi 2019).

The simultaneous calculation of analytic Jacobians of the four Stokes parameters
with respect to the aerosol optical depth, size parameters, refractive indices, and
aerosol-loading peak height for both fine and coarse model aerosols may be validated
against Jacobians estimates obtained by the finite difference method. As seen in
Fig. 12, results from the twomethods are highly correlated as seen in the scatter plots
shown in these figures. Relative differences in all comparisons are less than 0.5%,
and in many cases the differences are less than 0.05%.

3 Optimized Inversion and Information Content Analysis

Inverse algorithms and forward modeling are the two major components for the
retrieval of aerosol parameters from remote sensing observations. UNL-VRTM aims
to provide a testbed will not only simulate remote sensing observations, but will also
provide the kind of quantitative information contained in the observations that is
useful for retrieving these aerosol parameters. In this regard, we have implemented
a Bayesian-based optimal estimation (OE) algorithm to characterize and retrieve the
maximal information content contained in any combination of measurements. With
this, the testbed will allow us to seek the best design of a observing system that
optimally balances the science value and cost.

In this section, we summarize inverse retrieval theory, looking in particular at the
Bayesian-based OE method and information content analysis. Then we discuss the
deployment of the OE algorithm in UNL-VRTM, in particular focusing on coupling
the inverse code with the forward model component.

3.1 Maximum a Posteriori (MAP) Solution of an Inverse
Problem

Let x denote a state vector that contains n parameters to be retrieved (e.g. PSD
parameters and complex indices of refraction), and y an observation vector with m
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elements (such as multi-band radiances from different viewing angles). Furthermore,
let F indicate a forward-model operator (containing the UNL-VRTM forward model
components) that describes the physics of how y and x are related. Then, we may
write

y = F(x,b)+ εεεy (66)

where the vector b consists of forward model parameters (such as the surface
reflectance) that are not included in x but will quantitatively influence retrieval accu-
racy, and εεεy term is the measurement error. In this study, we use the best-estimate b̂
in the forward model and consider its contributions to the overall retrieval accuracy.
Linearizing the forward model at b = b̂:

y = F(x, b̂)+ K̂b(b − b̂)+ εεεy (67)

where K̂b is the weighting function (or Jacobian matrix) of the forward model to
model parameters b at b̂, ∂F

∂b

∣∣
b=b̂. If we treat the forward model as linear in the

vicinity of the true state of x, the forward model can be rewritten as:

y = Kx + εεε. (68)

Here, εεε represents the the sum of errors from the forward modeling step and the
measurements. We only consider uncertainties in b, but omitting other sources of
error in the forward modeling. Thus, εεε = εεεy + K̂bεεεb, where εεεb = b − b̂ denotes the
error of b̂. K is the m × n Jacobian matrix comprising derivatives of the forward
model with respect to each retrieved parameter, ∂F

∂x .
The inverse problem derives x from the measurement y by inverting the forward

model F. In most situations, the forward model is a complex process with a large
number of internal uncertainties. As a result, the inverse problem tends to be an ill-
posed problem, which requires imposition of a priori constraints. A priori represents
the knowledge of the state before the measurements are made. Further, we assume
that the true state is “close” to the a priori:

x = xa + εεεa. (69)

where xa is the a priori estimate and εεεa indicates the a priori error.

Fig. 13 The concept of an inverse problem that optimzes an estimate from observations. (Courtesy:
Daniel Jacobs)
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Then, the inverse problem solves the equation set (as illustrated in Fig. 13):

{
y = Kx + εεε

x = xa + εεεa.
(70)

As long as measurement and a priori errors are characterized by a Gaussian proba-
bility distribution functions (PDFs), and the forward model is assumed linear in the
vicinity of the true state, then the maximum a posteriori (MAP) solution of the state
vector, also called the retrieval or the a posteriori derived with the Bayes’ Theorem,
is given by Rodgers (2000):

x̂ = xa + (KTS−1
ε K + S−1

a )−1KTS−1
ε (y − Kxa) (71)

Here, Sa is the error covariance matrix of the a priori xa; Sε is the error covariance
matrix of the measurements; T denotes the matrix transpose operation.

The retrieved state vector x̂ in Eq. (71) corresponds to the maximum posterior
PDF and the minimum of a cost function defined by

J = (y − Kx)TS−1
ε (y − Kx)+ (x − xa)TS−1

a (x − xa). (72)

The posterior PDF is also Gaussion, with expected value of x̂ and error covariance
matrix Ŝ given by

Ŝ−1 = KTS−1
ε K + S−1

a . (73)

Ŝ describes the statistical uncertainties in the retrieved state vector x̂ due to mea-
surement noise, forward model parameter uncertainty, and smoothing error. The
square roots of its diagonal entries are the one-sigma uncertainties of each retrieved
element of x̂. Using Ŝ, we can also estimate errors for additional parameters that can
be fully expressed in terms of the state vector elements (for example, the error in the
aerosol single scattering albedo can be estimated from aerosol refractive index and
PSD parameters). If such a parameter is a function of x̂ defined by ζ = ζ(x), then
the uncertainty in derived ζ is:

ε̂ζ =

√√√√
n∑

i=1

n∑

i=1

∂ζ

∂xi

∂ζ

∂x j
Ŝi, j . (74)

3.2 Information Theory

The Jacobian matrix K is an important source of information in the sensitivity anal-
ysis. For a linear system in the absence of measurement error, the rank of K is a
measure of the number of independent pieces of information that can be determined
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from the measurements. In practice, measurement (and other) errors will inevitably
impact the effective rank. To identify the effective sensitivity of individual mea-
surement to each retrieved parameter, we define the error-normalized (EN) Jacobian
matrix by

K̃ = S
− 1

2
ε KS

1
2
a . (75)

K̃ is also called the “pre-whitening” matrix by Rodgers (2000). The advantage of
matrix K̃ over the matrixK is that the former compares the observation error covari-

ance (S
1
2
ε ) with the natural variability of the observation vector as expressed by its

prior covariance (KS
1
2
a ). Any component whose natural variability is smaller than the

observation error is not measurable. Therefore, an element in K̃i, j that is less than
unity indicates that the measurement component yi does not contain useful informa-
tion contributing to the determination of parameter x j . In contrast, when K̃i, j > 1,
and the larger the value of this quantity, then the more useful information is retained
in yi for the determination of x j . Therefore, the K̃ matrix not only provides the
sensitivity of individual measurements to each retrieved parameter, but it is also a
information-capacity metric for those observations to infer retrieved parameters.

The averaging kernel matrix is a widely-used metric to quantify retrieval infor-
mation. It provides the sensitivity of the retrieval to the true state and is defined
by

A = ∂ x̂
∂x

. (76)

Replacing y in Eq. (71) with Eq. (68) at x = xa,

x̂ = xa + (KTS−1
ε K + S−1

a )−1KTS−1
ε [K(x − xa)+ εεε] (77)

Then we have

A = ∂ x̂
∂x

=
(
KTS−1

ε K + S−1
a

)−1
KTS−1

ε K (78)

Matrix A quantifies the ability of the retrieval to infer x̂ given the relationship
betweeny andx (i.e.,K) andgiven the observation noise andapriori characterization.
Thus,A represents a perfect retrieval if it is an identity matrix; ifA is the null matrix,
no information at all can be gained from the observations. The trace ofA is the degree
of freedom for signal (DFS)

DFS = Trace(A), (79)

which is a measure of the number of independent pieces of information that the
observations can provide. The diagonal elements of the averaging kernel matrix A,
or the DFS components, are the partial sensitivities of individual retrieval parameters
with respect to their corresponding truth values:

Ai,i =
∂ x̂i
∂xi

(80)
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Clearly, Ai,i = 1 indicates that the observations are fully capable of characterizing
the truth of xi ; whileAi,i = 0 indicates the observations contain no information about
xi and xi is not measurable.

From the formulation of Ŝ and A, we conclude that only the error covariance and
Jacobianmatrix are important for the understanding and quantification of information
content. In other words, the resulting DFS and retrieval error essentially depend on
error specifications for a priori state and for the observations. Realistic uncertainty
characterizations for these two quantities are thus of critical importance in retrieval
studies.

Other quantities used for information analysis include the Shannon informa-
tion content Hshannon (Shannon 1948) and the Fisher information matrix. Hshannon

is defined as the reduction in entropy after applying the measurements

Hshannon =
1
2
ln |Sa| −

1
2
ln |Ŝ| = −1

2
ln |ŜS−1

a | = −1
2
ln |In − A| (81)

where In is an identity matrix of order n. Clearly, Hshannon is closely related to the
DFS. In the Gaussian linear case, the Fisher informationmatrix is equal to the inverse
of a posteriori error covariance matrix, Ŝ−1.

4 Applications

Since the first version (Wang et al. 2014) was released, UNL-VRTM has been used
to investigate retrieval capabilities for aerosol, cloud, and surface information from
a variety of current and future remote sensing instruments (see https://unl-vrtm.org
for a full list of scientific publications using UNL-VRTM). For instance, it was used
to

• evaluate the ability to improve simultaneous aerosol and surface retrievals by
combiningmultispectral radiances from two geostationary satellites, GOES-R and
TEMPO (Wang et al. 2014);

• study the information content contained in narrow-band and hyperspectral O2 A-
and B-band measurements for inferring aerosol vertical distribution (Ding and
Wang 2016; Wang et al. 2014; Xu et al. 2018);

• develop retrieval algorithms for determining aerosol layer height from the
DSCOVR/EPIC observations in the O2 A and B bands (Xu et al. 2017, 2018);

• verify the capability for joint retrieval of hyperspectral surface reflectance and
aerosol properties from the airborneGeoTASO instrument,which is a spectrometer
prototype for the TEMPO and GEMS satellite missions (Hou et al. 2016, 2017);

• assess the capability for retrieving bi-modal aerosol particle size and refractive
index from recently launched space-borne polarimeters, such as the Cloud and
Aerosol Polarimetric Imager (CAPI) carried by the TanSat (Chen et al. 2017) and
the Directional Polarimetric Camera (DPC) onboard the GaoFen-5 satellite (Hou
et al. 2018; Li et al. 2018);
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• retrieve bi-modal aerosol size and refractive index from AERONETmulti-angular
polarimetric measurements (Xu and Wang 2015; Xu et al. 2015);

• study the potential of the VIIRS Day/Night Band (DNB) for monitoring nighttime
air quality (Wang et al. 2016);

• examine the sensitivity of TOA reflectance measured byMODIS to aerosol optical
properties (Tao et al. 2017; Wang et al. 2017);

• evaluate the potential for simultaneous retrieval of cloud and above-cloud smoke
microphysical properties from hyperspectral shortwave measurements (Xu et al.
2018);

• assess the benefit of combined infrared and shortwave hyperspectral observations
for determining size-resolved dust optical properties and emitting sources (Xu et al.
2017). In this application, UNL-VRTM was integrated with two global chemistry
transport models (FIM-Chem and GEOS-Chem) to perform observation system
simulation experiments (OSSE) for the futureCLARREO(ClimateAbsoluteRadi-
ance and Refractivity Observatory) satellite.

Here, we will discuss two of these applications to demonstrate how UNL-VRTM
works as a remote sensing testbed. In the first application (Sect. 4.1), UNL-VRTM
wasused to explore shortwave spectral fingerprints of above-cloud smoke and to iden-
tify the retrievable parameters of joint aerosol-cloud from a shortwave spectrometer
(Xu et al. 2018). In the second application (Sect. 4.2), we used UNL-VRTM to inves-
tigate the available information contained in AERONET multi-angular polarimetric
observations for retrieving bi-modal aerosol microphysical properties (Xu andWang
2015; Xu et al. 2015).

4.1 Spectral Fingerprints of Above-Cloud Smoke

Absorbing aerosols like smoke can heat the atmosphere by absorbing solar radi-
ation, and such heating is enhanced when these aerosols are situated above liquid
(water droplet) clouds. The presence of smoke over cloud also affects satellite remote
sensing of cloud properties. When a cloud pixel is contaminated by lofted smoke
aerosols, the TOA reflectance as observed by a satellite sensor is reduced and the
spectral contrast increases. This may lead to a low bias of 6–20% in retrieved cloud
optical depth (COD) and an underestimation of cloud effective radius (Meyer et al.
2013), which in turn results in biases in satellite-based estimates of cloud liquidwater
content and radiative effect. As such, it is desirable to simultaneously characterize
the optical properties of smoke aerosols and underlying cloud droplets.

In this experiment, UNL-VRTM was used to investigate the spectral signature
of above-cloud smoke, and to assess the capability for a joint inversion of cloud
and aerosol optical thickness, along with their microphysical properties and vertical
separation over an ocean surface. First, the tool was used to generate synthetic TOA
reflectances in a 330–4000 nm range for a typical above-cloud smoke scenario. Then,
an observation error covariance matrix was set up to account for instrumental noise

a.kokhanovsky@vitrocisetbelgium.com



UNL-VRTM, A Testbed for Aerosol Remote Sensing … 39

and model errors. Next, the spectral signatures of cloud and smoke were analyzed
by examining the Jacobian sensitivities. Lastly, information content of the synthetic
data was assessed in terms of DFS, and retrieval uncertainties were estimated.

In order to highlight the advantage of hyperspectral inversion, we compared infor-
mation content extracted from hyperspectral observations with that obtained from
MODIS-type multispectral data. As listed in Table3, the former represents observa-
tions of a shortwave spectrometer with a resolution (FWHM) of 5 cm−1 measuring
radiances in the range 333–4000 nm. For multispectral data, 13 MODIS channels
fallingwithin our simulated spectral rangewere considered, i.e. channels 1–7, 17–21,
and 26. For each observation scenario, we considered two different spectral settings:
(A) 400–2400 nm, and (B) 333–4000 nm. Setting B covers the full solar spectral
range. In contrast, spectral setting A does not include the UV and medium-wave IR
(MWIR), and is similar to the spectral range of the AVIRIS-NG instrument [https://
aviris-ng.jpl.nasa.gov].

4.1.1 State Vector, Synthetic Data, and Error Covariance Matrices

The state vector comprises 13 cloud and aerosol parameters listed in Table4, namely,
550-nm COD τ c

550, cloud effective radius r
c
eff and effective variance v

c
eff, above-cloud

smokeAODat 550 nm τ a
550, smoke effective radius r aeff and effective variance v

a
eff, real

and imaginary parts of smoke refractive index with each represented by 3 principal
components (PC), and the smoke-cloud separation height H . As such, the state vector
can be expressed by

x =
[
τ c
550, r

c
eff, v

c
eff, τ

a
550, r

a
eff, v

a
eff, H,wr,wi

]T
, (82)

where each of wr and wi contains 3 amplitude values applied to the PCs of smoke
refractive index. Principal component analysis for some refractive indices was to
reduce the number of retrieval parameters. Cloud water droplets were assumed poly-
dispersedwith the Gamma PSD [(Eq. (88)], with the refractive index spectra reported
by Downing andWilliams (1975), Hale and Querry (1973), Kou et al. (1993). Smoke
particles were polydispersed with the lognormal size distribution [Eq. (93)].

Table 3 List of observation scenarios considered for above-cloud aerosol simulations
Scenario Observations included Remark

Hyper A 300–4000 nm per 5 cm−1 Full spectral shortwave

Hyper B 400–2400 nm per 5 cm−1 Close to AVIRIS-NG spectral
range

MODIS A MODIS bands in 300–4000 nm Has MWIR bands

MODIS B MODIS bands in 400–2400 nm No MWIR bands
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Fig. 14 TOA reflectance simulated by UNL-VRTM for cloud-only (black) and for two scenarios
of over-cloud smoke with 550nmAOD of 0.5 (solid blue) and 1.0 (solid red). Green circles indicate
MODIS bands. Discontinuities in the reflectance spectra arise from the absorption of solar radiation
by H2O and O2. Decreases in TOA reflectances due to the presence of smoke aerosols are indicated
by dotted curves. Figure adapted from Xu et al. (2018)

State vector elements used by UNL-VRTM to simulate the synthetic data are
compiled in Table4. A thick optically uniform cloud layer with τ c

550 = 10 between 1
and 2km altitude was assumed. Cloud r ceff 10µmand vceff 0.1 were selected according
to Nakajima et al. (1991). The overlying smoke plume was situated between 2km
and 8km altitude, with the plume assumed to have a quasi-Gaussian vertical shape
with peak extinction at 5km. The relative height of smoke above cloud was thus
3km, i.e., H = 3 km. Smoke reff (0.12 µm) and veff (0.18) were determined from
AERONET measured biomass burning aerosols (Dubovik et al. 2002).

Figure14 shows synthetic spectra of TOA reflectance simulated for two above-
cloud smoke loadings (solid lines, τ a

550 = 0.5 in blue and 1.0 in red), along with a
cloud-only spectrum (black). Spectral discontinuities result from strong absorption
by trace gases, such as H2O at 0.72, 0.82, 0.94, 1.1, 1.35, 1.87, and 2.7–3.2 µm and
O2 at 0.68 and 0.76 µm and the O2-N2 collision-induced absorption at 1.26 µm. In
the absence of smoke, the TOA reflectance of the cloud scene decreases from the UV
to red spectral regions; this is largely an effect of Rayleigh scattering. In contrast,
the presence of smoke over the cloud deck results in a reduction of TOA reflectance
that depends linearly on the smoke burden. Such a reduction is more significant at
shorter wavelengths, leading to a distinct spectral contrast.

As discussed in Sect. 3, realistic error characterizations for prior knowledge and
synthetic data are of key importance in information content analysis. A priori uncer-
tainties εεεa for retrieval parameters were specified to best represent their natural vari-
ability; these errors are listed in Table4. The state vector error covariance matrix Sa
was assumed diagonal, that is, a priori errors are uncorrelated.

Observation error covariance matrix is the sum of two terms

Sε = Sy + Sm. (83)

Here, Sy is the error covariance matrix describing the instrument noises, and Sm
the covariance matrix of forward model errors. We assumed that TOA reflectance
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Fig. 15 Illustration of observation error covariance matrix. a Diagonal elements of instrumental
and modeling error covariance matrices. b Graphics of the observation error covariance matrix.
Circles indicate error covariance for MODIS-type observations. Figure adapted from Xu et al.
(2018)

had a relative instrumental uncertainty of 2%, with lower-capped by an absolute
reflectance error 0.002. For hyperspectral data, inter-channel correlations of instru-
ment noise were limited to 5 adjacent channels on either side, with correlation coef-
ficients decreasing from 0.95 to 0.20 away from the diagonal. This choice was made
to reconcile spectral resolutions of some existing and future spectrometers, such as
the AVIRIS-NG and TEMPO. Forward-model errors are usually caused by inaccu-
rate model assumptions and uncertainties in model parametrizations. In practice, it is
difficult to derive Sm analytically, thanks to the complexity of forward model. Here,
a Monte-Carlo method was used to produce an ensemble of simulations, from which
the Sm was calculated [see Xu et al. (2018) for details].

Figure15a illustrates the diagonal elements of Sy and Sm, and the summed Sε is
shown in Fig. 15b. Circles indicate Sε for the MODIS-type observations. Diagonals
are observation error variances, whereas the off-diagonal elements represent error
correlations between observations, which are mainly characterized by the model
error covariance matrix Sm. Gaps in the error covariance correspond to the locations
of strong gas-absorbing bands.

a.kokhanovsky@vitrocisetbelgium.com



UNL-VRTM, A Testbed for Aerosol Remote Sensing … 43

4.1.2 Spectral Signatures of Cloud and Smoke

As calculated by UNL-VRTM, Jacobians of the TOA reflectances with respect to
cloud and smoke parameters (found in the Jacobian matrix K) can serve as a sensi-
tivity metric to characterize spectral signatures for each relevant parameter. Rather
than dealing directly with K, we compared the matrices ε (= [diag(Sε)] 1

2 ) and ε̃

(= KS
1
2
a ) in order to better analyze the spectral signature of each retrieved variable.

Here, ε represents observation error; ε̃ is the Jacobian matrix normalized by prior
errors, thus representing the natural variability of observation. Indeed, ε−1ε̃ is equal
to the pre-whiteningmatrix K̃ defined in Eq. (75). For any spectrum, if the magnitude
of ε̃ for a given parameter is less than the magnitude of ε, the TOA reflectance at this
spectrum is not going to contain useful information for determining this parameter.
Conversely, useful information will be gleaned if ε̃ has the larger magnitude.

Figure16a–c shows the components of ε̃ for cloud droplet properties under two
different smoke loadings (blue for τ a

550 = 0.5 and red for τ a
550 = 1.0). The filled

grey areas indicate the ranges of observation error ± ε. Clearly, the lofted smoke
dims the sensitivity of TOA reflectance to cloud in the shorter wavelengths where
smoke is optically significant (red versus blue curves), while the TOA reflectance
could be increased by thickened cloud optical loading, reduced effective droplet
size, or widened dispersion of droplet size. Also, the magnitudes of ε̃ for τ c

550 and
r ceff are significantly larger than those of the observation error. In contrast, the ε̃ for
vceff remains weak until the spectral wavelength exceeds 1500 nm (Fig.16c). Thus,
TOA reflectances at wavelengths shorter than 1500nm provide information for both
COD and droplet size, whereas longer wavelengths provide information primarily on
droplet size. This consderation has been used for satellite retrieval of vceff and COD
(Platnick et al. 2003).

In contrast to cloud, the above-cloud smoke particles act distinctively on the TOA
reflectance. Figure16d–f shows ε̃ for smoke τ a

550, r
a
eff , and vaeff, displaying overall

negative sensitivities for these three variables. In particular, TOA reflectances in
the UV-visible provide information primarily on τ a

550 (Fig. 16d), and at intermediate
wavelengths in the visible-NIR, they provide information on both the τ a

550 and r aeff
(Fig. 16d–e). However, no information was found for vaeff, as the magnitudes of ε̃ for
vaeff are lower than observation error for the entire spectral range (Fig. 16f).

Figure16g plots the ε̃ for cloud-aerosol separation H , which shows that radiances
at UV and blue wavelengths reduce significantly as the aerosol smoke layer increases
in altitude, because an elevated smoke layer absorbs solar radiation and reduces the
chance of light being scattered by underlying clouds and air molecules. As such,
the magnitude of this ε̃ falls off with the weakening of Rayleigh scattering at longer
wavelengths. Indeed, the UV absorbing aerosol index, which represents the enhance-
ment of spectral contrast in the UV by aerosol absorption, was found to be strongly
sensitive to H (Torres et al. 1998). In addition, the signature for H is enhanced by
absorptions of O2 and H2O at wavelengths between 680 and 1500 nm. While smoke
aerosols absorb sunlight, they also scatter light back to space and reduce the chance
of light being absorbed by underlying water vapor and O2. Therefore, the higher of
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Fig. 16 ε̃ for seven smoke and cloud physical variables (solid lines). Filled grey areas indicates
the range of observation error ± ε. Circles indicate MODIS spectral bands. (Figure is adapted from
Xu et al. (2018) and ε̃ for PC coefficients of smoke refractive index can be found from the same
article.)

the smoke layer, the stronger the reflected radiative signals received by satellite; this
principle has been used to derive layer height of aerosol and cloud (Dubuisson et al.
2009; Ding and Wang 2016).

4.1.3 Information Content and Retrieval Error

Based on the a priori and observation error covariances as noted already and the
Jacobian matrix computed with UNL-VRTM, we have calculated the averaging-
kernel matrix A [Eq. (78)] and the a posteriori error covariance matrix Ŝ [Eq. (73)],
for both the hyperspectral andMODIS-type observation scenarios defined in Table3.
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(a)

(b)

Fig. 17 Information content of hyperspectral (Hyper) and MODIS-type observations and resulting
retrieval uncertainty for the cloud and smoke retrievals variable, for the case of τ a550 = 0.5. a Partial
DFS values for each retrieved variable.bRatio of retrieval error to prior error (ε̂/εa) of each variable.
Four observation scenarios are defined in Table3. Figure adapted from Xu et al. (2018)

We then derived the total and partial DFS in Eqs. (79) and (80), as well as the retrieval
error ε̂ for each variable.

Figure17 illustrates partial DFS values and the ratio of a posteriori error ε̂ to a
priori error εa for each state vector parameter. The values of ε̂ for each parameter
are also listed in Table4. Overall, we found a total DFS of 10.0 for Hyper-B mea-
surements, an increase of about 5 from that of MODIS-B measurements. In other
words, the hyperspectral data contain enough additional information that can be used
to retrieve about 5 extra parameters. The same amount of information increase was
also found for observations in 400–2400 nm (i.e., Hyper-A versus MODIS-A).

According to Fig. 17a, MODIS-A and MODIS-B observations can yield 4.5 and
4.8 pieces of information, respectively. The difference of 0.3 DFS comes from the
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information for vceff gained forMODIS-Bmeasurements, as TOA reflectance in SWIR
contains partial information for vceff (Fig. 16c). In general, information fromMODIS-
type observations is distributed primarily amongst the COD, r ceff, smoke AOD, and
r aeff variables. However, MODIS-type observations have difficulty resolving H , vceff,
vaeff, and the smoke refractive index.

Clearly, hyperspectral observations (for both the A and B spectral settings ) can
significantly advance the retrieval accuracy of these parameters excluding vaeff. Sur-
prisingly, hyperspectral data also contain useful information for the complex smoke
refractive index, especially the imaginary part, showing that aerosol absorption can
be well retrieved from hyperspectral measurements. However, the use of hyperspec-
tral data provides no additional information for improving retrievals of vaeff, and only
limited information for retrieving the real part of refractive index.

4.2 Bi-Modal Aerosol Properties from Polarimetric Data

In contrast to the above example that focused on hyperspectral measurements, this
application seeks to retrieve aerosol microphysical properties from polarimetric data
collected by AERONET. AERONET’s CIMEL-318 sun photometer measures not
only direct and diffuse radiances, but also the state of light polarization from mul-
tiple viewing angles over many sites (Holben et al. 1998). The current AERONET
operational inversion algorithm uses only the radiance data, although polarization
measurements contain additional valuable information about aerosol size and refrac-
tive index (Hansen and Travis 1974; Mishchenko and Travis 1997). To achieve an
improved aerosol microphysical characterization (Mishchenko et al. 2004), sev-
eral studies have recommended the addition of polarization measurements to the
AERONET inversion process (Xu and Wang 2015; Xu et al. 2015; Fedarenka et al.
2016).

In our study (Xu and Wang 2015), UNL-VRTM was used to address two key
questions: (1) From a practical standpoint, what is the magnitude of the informa-
tion content of AERONET’s polarimetric measurements, for improving the retrieval
of aerosol microphysical properties routinely derived from radiance-only measure-
ments?; and (2)Hypothetically, how canwe desgin future upgrades to theAERONET
polarimetric measurements and the AERONET inversion algorithm to maximize the
retrieval information contents? Answering these two questions is relevant not only to
the future AERONET instrumentation design, but also for the ground-based passive
polarimetric remote sensing of aerosols in general. Indeed, results from this study
have helped to provide theoretical guidances towards a new AERONET research
algorithm developed in a companion study (Xu et al. 2015).

Answers to above questions were sought from a theoretical perspective by inves-
tigating the available information contained in AERONET measurements with and
without the inclusion of polarization data. The analysis started with the generation
of synthetic measurements at four spectral bands (440, 675, 870, and 1020 nm) with
UNL-VRTM for various types of spherical aerosol particles. Subsequently, the quan-
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Table 5 List of AERONET observation scenarios used for information content analysisa

Scenario Observations included Remark

I1 τA, and Ialm Observations used in
AERONET inversion
algorithm

I2 τA, Ialm, and Ipp Scenario I1 plus
principal-plane radiances

P1 τA, Ialm, Ipp and DOLPpp Scenario I2 plus
principal-plane polarization

P2 τA, Ialm, and DOLPalm Scenario I1 plus almucantar
polarization

aVariables are specified at four spectral wavelengths (440, 675, 870, and 1020 nm)

titative information content for retrieving aerosol parameters was identified for the
four observation scenarios (I1, I2, P1, and P2) defined in Table5.

Measurements in scenario I1 comprised the direct-sunAODs τA and the sky almu-
cantar radiances Ialm that are used regularly in the AERONET operational inversion
algorithm. The other three scenarios included different additional measurements: the
solar principal-plane radiances Ipp were added (scenario I2), the solar principal-plane
radiances Ipp and polarization DOLPpp were added (scenario P1), and the sky almu-
cantar polarizationDOLPalm was added (scenario P2).Here, the almucantar radiances
Ialm are taken at a single zenith angle of the Sun but for 76 specified relative azimuth
angless. The principal-plane polarization DOLPpp is a series of polarimetric mea-
surements taken in the solar principal plane at 5◦ intervals in the viewing zenith
angle, from the anti-solar side to the solar side. Note that DOLPalm is not routinely
measured by any current sun photometer, but was included for comparative analysis.

4.2.1 State Vector, Synthetic Data, and Prior and Observation Errors

The state vector x has 22 parameters—11 each for the fine and coarse aerosol modes.
The 11mode variables are the columnar volume concentration V0, the effective radius
reff, the effective variance veff, and the complex refractive indexmr + m ii at 440, 675,
870, and 1020 nm. Aerosols are polydispersed with lognormal PSDs as in Eq. (50).
Table6 lists the PSD parameters for each mode that were used in the synthetic data
simulation; also shown in brackets are their associated a priori uncertainties. The fine-
mode particles correspondeds to water-soluble aerosol particles, while the coarse-
mode is made up of large spherical particles with the refractive index for dust. In
the study, fractional contributions of these two aerosols modes were varied in order
to investigate scenarios from fine-dominated to well-mixed and coarse-dominated
mixtures.

Synthetic AERONET observations were simulated with UNL-VRTM under var-
ious solar zenith angles from 40◦ to 75◦. Figure18 shows Ialm and DOLPpp for well-
mixed aerosols (equal volumes of fine and coarse mode particles) at solar zenith
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Table 6 Aerosol parameters (and prior errors) defined for fine and coarse modesa

Mode reff (µm) veff mr mi ωA

Fine 0.21
(80%)

0.25
(80%)

1.44, 1.44,
1.43, 1.42
(0.15)

0.009, 0.011,
0.012, 0.011
(0.01)

0.95, 0.93,
0.92, 0.91
0.151

Coarse 1.90
(80%)

0.41
(80%)

1.56, 1.55,
1.54, 1.54
(0.15)

0.004, 0.003,
0.003, 0.002
(0.005)

0.84, 0.91,
0.93, 0.96
0.198

aThe complex refractive index mr − mii , and single scattering albedo ωA were reported at 440,
675, 870, and 1020 nm. Bracketed values are assumed a priori errors—relative errors for reff and
veff but absolute for mr, mi, and ωA

(a) (b)

Fig. 18 Simulation of radiances and polarization by UNL-VRTM: a Radiances in the solar almu-
cantar plane as a function of azimuth angle. b DOLP in the solar principal plane as a function of
view zenith angle. Simulations are for columnar AOD of 1.0 at 440 nm. Solar zenith angle is 55◦

and top abscissae show the corresponding scattering angles. Figure adapted from Xu and Wang
(2015)

angle of 55◦. Simulations for other aerosol mixtures and other solar zenith angles
show similar overall patterns. According to Fig. 18a, Ialm decreases as the scattering
angle increases; this is as expected owing to the forward-dominated scattering phase
functions of the aerosol particles. The peak DOLPpp occurs at scattering angle 90◦,
as a result of composite effect of Rayleigh and aerosol scattering (Fig. 18b).

A priori errors εa of the retrieval parameters are given in Table5. Uncertainties
for aerosol microphysical parameters were based on aerosol climatology used in the
companion study (Xu et al. 2015). The relative errors of reff and veff were set at 80%
for both aerosol modes, with absolute errors 0.15 for mr of both modes, 0.01 for
fine-mode m i, and 0.05 forcoarse-mode m i. These prescribed a priori uncertainties
produced errors 0.15 and 0.20 for the aerosol single scattering albedo (ωA) of the
fine-mode and coarse-mode, respectively. We postulated that the aerosol columnar
volume concentrations for both modes were unknown with a relative uncertainty of
100%. We also assumed that the a priori uncertainties were uncorrelated, making Sa
a diagonal matrix.
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Observation errors for synthetic AERONET data were instrument calibration
uncertainty and forwardmodeling error.We chose conservatively an absolute error of
0.02 for the direct-sunAOD, a relative uncertainty of 5% for Ialm and Ipp, and an abso-
lute uncertainty of 0.01 for DOLP. These error assumptions were based on reported
AERONET calibration uncertainties (Dubovik and King 2000; Holben et al. 1998).
As to forward model error, a covariance matrix was calculated to represent errors in
radiance and polarization incurred by limited knowledge of surface reflectivity (Xu
and Wang 2015).

4.2.2 Aerosol Signatures in Angular Radiance and Polarization

The error-normalized (EN) Jacobians in Eq. (75) were calculated in order to exam-
ine the sensitivity of radiance and polarization to each element of the state vector.
Figure19 presents the EN Jacobians with respect to fine and coarse modal aerosol
volumes, showing distinct angular signatures in DOLPpp and Ialm. According to
Fig. 19a, c, the radiance at scattering angles less than ∼ 10◦ decreases with increas-
ing fine-mode aerosol loading (e.g. negative ∂ Ialm/∂V0) and increaseswith increasing
coarse-mode aerosol loading (e.g. positive ∂ Ialm/∂V0), whereas the sensitivity of the
Ialm to V0 at larger scattering angles is more positive in the finemode and less positive
in the coarse mode. This occurs because large particles scatter more radiation than
small particles at near-forward scattering angles. In contrast, the DOLPpp exhibits
strong sensitivity to aerosol V0 of aerosol in both modes at the scattering angles
between 45◦ and 135◦ (Fig. 19b, d).

Furthermore, the EN Jacobians of Ialm and DOLPpp are also complementary in
terms of their variation with wavelength. For example, the EN Jacobians of Ialm with
respect to the fine-mode V0 are lowest at 440 nm (blue curve in Fig. 19a), but those
for DOLPpp at 440 nm (blue curve in Fig. 19b) are the largest ones among these four
spectral bands.

By comparing the EN Jacobians of Ialm and DOLPpp with respect to all retrieved
aerosol parameters (figures not shown here), our study (Xu and Wang 2015) showed
in general that the DOLPpp EN Jacobians have similar or larger magnitudes to these
of Ialm, indicating that the DOLPpp measurements possess equal or better than equal
information for the inversion of these aerosol properties. Hence, adding such comple-
mentaryDOLPpp measurements to the current radiance-only inversion canpotentially
improve the retrieval accuracy.

4.2.3 Additional Information by Including Polarization

We calculated the averaging-kernel matrix A, DFS, and the a posteriori error for
retrieved parameters for the four observation scenarios listed in Table5. Figure20
shows DFS as a function of solar zenith angle for three aerosol mixtures with AOD
equal to 1.0 at 440 nm. The DFS in scenario I2 (red curves) ranges from 14 to 15 for
the fine-dominated aerosol model, and from 17 to 19 for other two aerosol models;
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(a) (b)

(c) (d)

Fig. 19 Error-normalized Jacobians of almucantar radiances Ialm (left column) and degree of linear
polarizationDOLPpp (right column)with respect to aerosol volume, in the finemode (top) and coarse
mode (bottom). From the same UNL-VRTM simulations performed for Fig. 18. Adapted from Xu
and Wang (2015)

values that are 2–3 higher than those obtained using AODs and Ialm measurements
in the scenario I1 (black curves), indicating that sky radiances in the principal plane
(Ipp) do contain additional information. The scenario P1 (green curves), which com-
prises Ipp and DOLPpp, further increases DFS by 1–2. Observations in scenario P2
(blue curves)—radiance and polarization in the almucantar plane—yields DFS val-
ues slightly below those in the scenarios I2 and P1. Clearly, adding measurements
in the solar principal plane into the inversion significantly increases the information
content for aerosol properties, especially for combined Ipp and DOLPpp. We also
noted that the DFS increases with solar zenith angle for all cases; this is because
observations at larger solar zenith angle enable a wider range of scattering angles,
and thus contain more information on the aerosol scattering phase function and in
turn on aerosol microphysical parameters.

For I1 and P1 scenarios, we further extended the analysis for 440nmAODvarying
from 0.1 to 2.0, and for fine-mode volume fraction fmfv varying from 0.1 to 0.9. In
practice, the fmfv is inaccessible prior to inversion. To get round this, we used the
Angstrom exponent (AE) from 870 to 1020nm together with 440nm AOD to define
the aerosol conditions, because the AE in the longer pair of wavelengths is closely
related to the fmfv (Xu et al. 2015) and immediately available from the AERONET
direct sunmeasurements.With the aerosol properties defined in the Table5, changing
the fmfv from 0.1 to 0.9 resulted in AE values from 0.35 to 2.3.

Figure21a, b displays the contours of DFS as a function of the AE (or fmfv)
and 440nm AOD in the scenarios I1 and P1, respectively. We found that the DFS
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(a) (b) (c)

Fig. 20 DFS as a function of solar zenith angle for retrieving 22 parameters when using aerosol
mixtures: a fine-dominated case with fmfv of 0.8, bwell-mixed case with fmfv of 0.5, and c coarse-
dominated case with fmfv of 0.8. The four colors correspond to the observation scenarios listed in
Table5. Adapted from Xu and Wang (2015)

Fig. 21 Contours of DFS as a function of fmfv and AOD in I1 (a) and P1 (b) scenarios. (c) the
increase of DFS from (a) to (b). Simulations are for solar zenith angle of 55◦. Adapted from Xu
and Wang (2015)

decreases with the increase of fmfv for the same AOD. This is because the coarse-
mode parameters are more difficult to retrieve than their fine-mode counterparts, the
former being constrained by their weaker sensitivities to the Ialm and DOLPpp. Thus,
lowering the coarse-mode fraction can significantly reduce aerosol information for
coarse-mode parameters, but it will retain the information for fine-mode parameters,
although resulting in a net decrease of the total DFS.

We also noticed from Fig. 21a that the DFS increases with an increasing AOD
in scenario I1. However, AOD change has less impact in the scenario P1 (Fig.21b).
For example, the DFS values are lower than 14 when AOD< 0.4 in the scenario I1,
whereas even larger DFS can be found in scenario P1 when AOD < 0.2. Therefore,
we may expect that the inversion in the scenario P1 will be capable of retrieving
aerosol parameters for situations with smaller aerosol loading. Finally, as seen in
Fig. 21c, the addition of Ipp and DOLPpp in the inversion can add 2–5 pieces of
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useful information. Such an improvement is apparent for all aerosol conditions but
is more marked when larger numbers of coarse particles are present: fmfv < 0.5 (or
AE< 1.6), in which the radiance-only inversion usually yields a large retrieval error
for the fine-mode aerosol.

We also analyzed the improvements in retrieval accuracy for individual parame-
ters. The smallest retrieval errors were always found in the scenario P1, showing that
the addition of principal-plane polarization data could reduce retrieval uncertainties
by at least 50% for all parameters (Xu andWang 2015). In addition, our findings also
agreed with those of Dubovik and King (2000), in that the radiance-only inversion
was unable to resolve bimodal refractive index values and single scattering albedo
under. However, observations in scenario P1 could allow bimodal retrievals of these
parameters when 0.7 < AE < 1.6. Such considerations can help us in practical to
determine whether a monomodal or bimodal retrieval of aerosol refractive index is
possible.

5 Summary and Outlook

With integrated components for forward scattering and radiative transfer model-
ing, and Bayesian-based inverse modeling, UNL-VRTM is an ideal testbed for
the investigation of remote sensing applications, especially for those involving
aerosol retrievals. The forward modeling components of UNL-VRTM take advan-
tage of many valuable developments from the community, including the state-of-
the-art VLIDORT model, the linearized Mie and T-matrix codes, the HITRAN
line-spectroscopic absorption database, and the MT_CKD continuum absorption
code, etc. Our development emphasizes the integration of these available modules
into a unified testbed tool that can objectively assess useful information of an obser-
vation system. The model package is public available through https://unl-vrtm.org.
In summary, UNL-VRTM has following features:

• It gives a rigorous and integrated treatment of the necessary physical processes
(such as absorption of trace gases, molecular and particle scattering, surface reflec-
tion, and radiative transfer);

• It can perform accurate simulations of measured quantities for any remote sensing
observation system, including radiances and polarization;

• It can perform accurate hyperspectral simulations from the UV to thermal IR in
the spectral range of 0.2–40 µm;

• It can compute directly the profile and columnar sensitivities (Jacobians) of mea-
sured quantities with respect to aerosol parameters (bi-modal AOD, volume, single
scattering albedo, particle size parameters, refractive index, particle shape factor,
and vertical profile), gas absorption optical depth and mixing ratio, and surface
reflectance parameters;

• It can be used to quantify information content for any observational system for
retrieving interested aerosol, gas, and/or surface parameters;
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• It has a simple interface allowing the user to flexibly configure forward modeling
simulations in a versatile manner.

There are several ongoing efforts to improve UNL-VRTM’s capability. First, a
database of scattering optical properties for non-spherical particles provided byMeng
et al. (2010) is being incorporated (Chen et al. 2018). This dataset will extend the
aerosol capability, as the linearized T-matrix code in UNL-VRTM has difficulties
dealing with large non-spherical dust-like particles. Second, a UNL-VRTM-based
night-time radiative transfer model is under construction (Zhou et al. 2018). Such a
development involves adding spectral illumination sources from themoon, nighttime
city lights, and wild fires. This additional model will be useful for night-time aerosol
and cloud remote sensing [such as from the VIIRSDNB (Wang et al. 2016)]. Thirdly,
the bi-modal treatment of aerosols is being expanded to incorporate multiple aerosol
modes; thiswill enablemodeling for a greater variety of aerosol (and cloud)mixtures.
Finally, with further upgrades in the future and an expanding user community, we
anticipate that UNL-VRTM will find more applications in Earth remote sensing,
and we look forward to collaborations on these subjects with colleagues in the user
community.
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Appendices

Appendix 1 Particle Size Distributions (PSDs)

Size distribution is an important microphysical property describing the size disper-
sion of a collection of aerosol particles in the atmosphere. The particle number size
distribution function is often expressed by N (r), and with N (r)dr denoting the num-
ber of particles per unit volume with radii between r and r + dr . One can also write
N (r) = dN

dr . If r1 and r2 are the smallest and largest radii, the total number of particles
per unit volume is

a.kokhanovsky@vitrocisetbelgium.com



54 X. Xu and J. Wang

N0 =
∫ r2

r1
N (r)dr. (84)

It is often convenient to normalize the distribution function to unity, that is, N0 = 1.
Two important parameters of a size distribution are the effective radius reff and

effective variance veff, defined as

reff =
1
G

∫ r2

r1
rπr2N (r)dr, (85)

veff =
1

Gr2eff

∫ r2

r1
(r − reff)2πr2N (r)dr, (86)

where G is the geometric cross-sectional area of particles per unit volume,

G =
∫ r2

r1
πr2N (r)dr. (87)

Here we summarize the analytical PSD functions implemented in the linearized
Mie and linearized T-matrix codes (Spurr et al. 2012), including the ‘gamma’, ‘modi-
fied gamma’, ‘lognormal’, and ‘power law’ size distributions. Fuller descriptions for
these functions can be found in Hansen and Travis (1974), Mishchenko and Travis
(1998). Among these, the lognormal function has seen probably the widest applica-
tions in modeling aerosol microphysics, and for this PSD, we will discuss further the
conventions for lognormal distribution applied to particle number, area, and volume
distributions.

Gamma Distributions

The standard gamma distribution function is given by

N (r) = N0β

Γ (α + 1)
(βr)α exp(−βr), (88)

whereΓ indicates the gamma function. There are two free parametersα and β, which
are related to effective radius reff and effective variance veff by

α = 1 − 3veff
veff

and β = 1
reffveff

. (89)

The bimodal gamma distribution is given by

N (r) = 1
2

N0β1

Γ (α + 1)
(β1r)α exp(−β1r)+

1
2

N0β2

Γ (α + 1)
(β2r)α exp(−β2r). (90)
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The two modes are described by two different reff values, but with the same value
for veff and the same number of particles.

Another related gamma distribution is the modified gamma PSD, which is con-
trolled by three free parameters α, rc, and γ :

N (r) = N0γ

rcΓ
(

α+1
γ

)
(

α

γ

)(α+1)/γ ( r
rc

)α

exp
[
−α

γ

(
r
rc

)γ]
. (91)

Power Law Distribution

The power law size distribution is

N (r) = N0
2r1r2
r22 − r21

r−α, for r1 ≤ r ≤ r2. (92)

This distribution also has three free parameters: the smallest radius r1, the largest
radius r2, and the exponential term α; the value α = 3was used byHansen and Travis
(1974).

Lognormal Distribution

The basic definition for the lognormal PSD in terms of the number distribution is

N (r) = N0

r ln σg
√
2π

exp
(

− (ln r − ln rg)2

2 ln2 σg

)
, (93)

where the two parameters rg and σg are the geometric number mean radius and
standard deviation with σg > 1.

However, it turns out that N0, rg, and σg are not so convenient to characterize the
PSD from the observational and modeling perspectives. A better alternative is to use
the area or volume distributions, which are similarly formulated with the same σg

but with two other parameters, namely, the total cross-sectional area of particles S0
and geometric area mean radius rs for the area distribution, and total particle volume
V0 and geometric volume mean radius rv for the volume distribution (Seinfeld et al.
2006):

S(r) = S0
r ln σg

√
2π

exp
(

− (ln r − ln rs)2

2 ln2 σg

)
, (94)

V (r) = V0

r ln σg
√
2π

exp
(

− (ln r − ln rv)2

2 ln2 σg

)
. (95)
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The geometric mean radius rs and rv can be calculated from rg and σg by

rs = rg exp (2 ln2 σg) and rv = rg exp (3 ln2 σg). (96)

The total cross-sectional area S0 and volume V0 can also be derived analytically from
the total number N0 by

S0 = N0πr2g exp
(
4 ln2 σg

2

)
and V0 = N0

4π
3
r3g exp

(
9 ln2 σg

2

)
. (97)

Moreover, the effective size parameters are related to the geometric number and
volume mean radius by

reff = rg exp
(
5
2
ln2 σg

)
= rv exp

(
−1
2
ln2 σg

)
, (98)

veff = exp (ln2 σg) − 1. (99)

Relating AOD to extinction efficiency factor: The aerosol optical thickness can
be defined in terms of the extinction cross sectionCext multiplied by the total particle
number:

τ = N0Cext. (100)

When we replace N0 by V0 from Eq. (97) and apply reff with Eq. (98), we can derive
τ directly from the total aerosol particle volume

τ = 3

4πr3g exp
(
9 ln2 σg

2

) V0Cext

= 3

4πr2g exp
(
4 ln2 σg

2

)
rg exp

(
5 ln2 σg

2

) V0Cext

= 3V0

4reff

Cext

G
= 3V0

4reff
Qext, (101)

where G = S0/N0 is the geometric cross-sectional area, and Qext = Cext/G is the
extinction efficiency factor. Moreover, aerosol particle mass burden M can also be
related to τ through the aerosol density ρ:

τ = 3M
4ρreff

Qext. (102)
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Appendix 2 BRDF and BPDF Kernels

For convenience, we list here the anisotropic BRDF and BPDF kernels used in
UNL-VRTM. Program codes of these kernels are part of the VLIDORT model as
a supplementary package (Spurr 2006). Full details may be found in the literature.
These kernels were analytically linearized to calculate partial derivatives with respect
to specific kernel input parameters, and detailed derivations for the linearization of
most kernels can be found in Spurr (2004).

Note that these kernels are functions of the incident and reflected directional angles
(zenith angle of incident beam θ0, zenith angle of reflected beam θ , and the relative
azimuth angle ∆φ) and spectral wavelength λ. λ is omitted in these equations for
simplification. Inmost situations, we useµ andµ0 to respectively represent cos θ and
cos θ0. In addition, many kernels also use the phase angle of scattering (or reflection)
ξ which is supplementary to the scattering angle Θ , i.e., ξ = π − Θ , and thus

cos ξ = cos θ cos θ0 + sin θ sin θ0 cos∆φ. (103)

Ross-Thin and Ross-Thick Kernels

Ross-type kernels are empirical volume-scattering models applied to optically thick
and thin vegetation canopies (Ross 1981; Wanner et al. 1995):

fthick(θ, θ0,∆φ) = (π/2 − ξ) cos ξ + sin ξ

µ+ µ0
− π

4
, (104)

fthin(θ, θ0,∆φ) = (π/2 − ξ) cos ξ + sin ξ

µµ0
− π

2
. (105)

Ross-type kernels have no non-linear parameters and were derived from radiative
transfer theory applied to a layer of randomly oriented scattering facets (leaves) over
a surface of known Lambertian albedo (Ross 1981).

Li-Sparse and Li-Dense Kernels

Li-type kernels are geometric scattering models derived for sparse and dense vege-
tation cover by consideration of the mutual shadowing effect of the canopy (Li and
Strahler 1992; Wanner et al. 1995). Tree crowns are assumed to be spheroids of
vertical dimension b, horizontal dimension r , with their centers at height h above the
ground. Two free parameters thus characterize the kernel’s shape, namely, the crown
ratio b/r and height ratio h/b. The BRDF functions are given by
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fsparse(θ, θ0,∆φ) = 1
2
(1 − cos ξ ′) sec θ ′ sec θ ′

0

−
[
sec θ ′

0 + sec θ ′ − O(θ, θ0,∆φ)
]
, (106)

fdense(θ, θ0,∆φ) = (1 − cos ξ ′) sec θ ′ sec θ ′
0

sec θ ′
0 + sec θ ′ − O(θ, θ0,∆φ)

− 2, (107)

where θ ′, θ ′
0, and ξ ′ are locally adjusted adjusted view zenith angle, solar zenith

angle, and phase angle:

θ ′ = tan−1
(
b
r
tan θ

)
, θ ′

0 = tan−1
(
b
r
tan θ0

)
, and (108)

cos ξ ′ = cos θ ′ cos θ ′
0 + sin θ ′ sin θ ′

0 cos∆φ. (109)

The term O(θ, θ0,∆φ) in Li kernels represents the overlapping area between view
and solar shadows and is expressed by

O(θ, θ0,∆φ) = 1
π
(1 − sin t cos t)(sec θ ′

0 + sec θ ′), (110)

where t satisfies

cos t = h
b

√
D2 + (tan θ ′

0 tan θ ′ tan∆φ)2

sec θ ′
0 + sec θ ′ , (111)

D =
√
tan2 θ ′

0 + tan2 θ ′ − 2 tan θ ′
0 tan θ ′ cos∆φ. (112)

Hapke Kernel

The Hapke (1993) has three free parameters:

fhapke(θ, θ0,∆φ) = ω

4(µ0 + µ)
[(1+ B(ξ))P(ξ)+ T (θ0)T (θ) − 1] , (113)

where ω and P(ξ) are the single scattering albedo and phase function of the surface
material. The phase function is given by P(ξ) = 1+ 1

2 cos ξ . The term 1+ B(ξ)
explicitly accounts for the hot spot with

B(ξ) = B0h

h + tan ξ
2

. (114)

The multi-scattering term T (θ0)T (θ) is defined factors
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T (θ) = 1+ 2 cos θ

1+ 2 cos θ
√
1 − ω

. (115)

The three free parameters are the single scattering albedo ω, the amplitude (B0) and
the angular width (h) of the hot spot.

Roujean Kernel

This is a geometric kernel developed byRoujean et al. (1992). It has no free parameter
and is given by

froujean(θ, θ0,∆φ) = 1
2π

[(π − ∆φ) cos∆φ + sin∆φ] tan θ0 tan θ

− 1
π
(tan θ + tan θ0 + G), (116)

with a geometric factor G defined by

G(θ, θ0,∆φ) =
√
tan2 θ0 + tan2 θ − 2 tan θ0 tan θ cos∆φ (117)

Rahman (RPV) Kernel

The Rahman or the Rahman-Pinty-Verstraete(RPV) BRDF model was developed by
Rahman et al. (1993), and is based on a reflection mode developed for lunar surface
(Minneaert 1941):

frahman(θ, θ0,∆φ) = ρ0
(µ0µ)

k−1

(µ0 + µ)1−k
F(ξ)[1+ R(G)], (118)

where ξ is scattering phase angle defined in Eq. (103) and F(ξ) is the Henyey-
Greenstein scattering phase function characterized by an asymmetry factor g,

F(ξ) = 1 − g2
[
1+ g2 − 2g cos (π − ξ)

]3/2 . (119)

And 1+ R(G) = 1+ (1 − ρ0)/(1+ G) explicitly accounts for the hot spot with G
the same geometric factor defined for the Roujean kernel in Eq. (117).

Hence, Rahman kernel has three free parameters, namely ρ0 for overall amplitude,
g for Henyey-Greenstein phase function, and k for characterizing the angular spread.
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Maignan Kernel

This is a land surface BPDF kernel developed by Maignan et al. (2009) through
an analysis of multi-year PARASOL observations. It has one free parameters ν, the
Normalized Difference Vegetation Index (NDVI). The polarized reflectance tends to
decrease (by a factor of e−ν) with increasing vegetation cover, and the kernel function
is given by

fmaignan(θ, θ0,∆φ) = Ce−(ν+tan γ )

4(µ0 + µ)
Fr(γ ,m), (120)

where C is a constant chosen for certain surface type,m is the refractive index of the
vegetation canopy (taken to be 1.5), and γ = ξ/2. Fr(γ ,m) is the Fresnel reflection
matrix having 8 non-zero elements (Kokhanovsky et al. 2015):

Fr11 = Fr22 = (R∥R∗
∥ + R⊥ R∗

⊥ )/2, (121)

Fr12 = Fr21 = (R∥R∗
∥ − R⊥ R∗

⊥ )/2, (122)

Fr33 = Fr44 = (R∥R∗
⊥ + R⊥ R∗

∥)/2, (123)

Fr34 = Fr43 = i(R∥R∗
⊥ − R⊥ R∗

∥)/2. (124)

Here, the asterisk symbol indicates the conjugate of a complex number, and R∥ and
R⊥ are defined as

R∥ =
m cos γ − cos γ ′
m cos γ + cos γ ′ , (125)

R⊥ = cos γ − m cos γ ′
cos γ + m cos γ ′ , (126)

where γ ′ is related to γ through the Snell’s refraction law and is given as:

sin γ ′ = sin γ

m
. (127)

Cox-Munk and GISS-Cox-Munk Kernels

The ocean glitter specular kernels in the VLIDORT package include a scalar Cox-
Munk kernel (Cox et al. 1954) and a vectorGISS-Cox-Munk kernel (Mishchenko and
Travis 1997). Both the kernels have two free parameters; one is the water refractive
index m, and the other one is the geometric factor σ 2 empirically related to wind
speed w through σ 2 = 0.003+ 0.00512w.

The scalar Cox-Munk kernel is given by

fcox-munk = Fr11(γ ,m)P(θ0, θ,∆φ, σ 2), (128)
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where Fr11(γ ,m) is the (1,1) element of the Fresnel reflection matrix, and γ = ξ/2.
The probability function describing the glitter is given by

P(θ0, θ,∆φ, σ 2) = 4 cos4 ξ
2

µµ0πσ 2
exp

[

− tan2 (π
2 − sin−1 ξ

2 )

σ 2

]

. (129)

To account for shadowing effects of water waves, the kernel is multiplied by a bidi-
rectional shadow function given by Sancer (1969).

The vector GISS-Cox-Munk kernel function was based on the description in
Mishchenko and Travis (1997), which has a similar formulation to the above, but it
now considers the full 4 × 4 Fresnel reflection matrix. However, it should be noted
that the input parameters in UNL-VRTM is defined as (σ 2,m2) for the Cox-Munk
kernel, but as (0.5σ 2,m) for the GISS-Cox-Munk kernel.

Appendix 3 Derivation of the Transformation MatrixΠΠΠ

This appendix presents derivations of equations (57) and (59) in the main text, along
with the expressions in Tables1 and 2. It should be noted that all optical parameters
are functions of wavelength and defined for each atmospheric layer, but for reasons
of clarity, we will omit the wavelength dependence and drop the layer index in the
following.

Let x be an aerosolmicrophysical parameter. The aerosol extinction and scattering
optical thickness (τA and δA), single scattering albedo (ωA), and Greek coefficient
matrix (B j

A) are functions of x . However, gaseous absorption and Rayleigh scattering
parameters are independent of x .

First, we transform Eq. (56) as follows:

φx =
x
τ

∂τ

∂x
= x

τ

∂(τG + τR + τA)

∂x
= 1

τ
x
∂τA

∂x
(130)

ϕx =
x
ω

∂ω

∂x
= x

ω

∂[(δA + τG)/τ ]
∂x

= x
ω

1
τ 2

[
τ

∂(δA + τR)

∂x
− (δA + τR)

∂τ

∂x

]

= x
ωτ

∂δA

∂x
− (δA + τR)

x
ωτ 2

∂τA

∂x

= x
δA + τR

∂δA

∂x
− 1

τ

∂τA

∂x

= x
δA + τR

∂δA

∂x
− φx (131)

ΨΨΨ j
x =

x
B j

∂B j

∂x
= x

B j

∂[(τRB j
R + δAB

j
A)/(δA + τR)]

∂x
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= x
B j

1
(δA + τR)2

[

(δA + τR)
∂(δAB

j
A)

∂x
− (τRB

j
R + δAB

j
A)

∂δA

∂x

]

= x
B j

1
δA + τR

[
∂(δAB

j
A)

∂x
− B j ∂δA

∂x

]

= 1
(δA + τR)B j

[

δAx
B j
A

∂x
+ (B j

A − B j )x
∂δA

∂x

]

(132)

These expressions are linear combinations of φ′
x , ϕ′

x , and ΨΨΨ
′ j
x (as defined by Eq.

(58)), where

[
φ′
x ,ϕ

′
x , ⟨ΨΨΨ ′ j

x ⟩ j=1,J
]T =

[

x
∂τA

∂x
, x

∂δA

∂x
, ⟨x ∂B j

A

∂x
⟩ j=1,J

]T
(133)

We then can then write the above Eqs. (130)–(132) in a vector formulism (as in
Eq. (57)): [

φx ,ϕx , ⟨ΨΨΨ j
x ⟩ j=1,J

]T = ΠΠΠ
[
φ′
x ,ϕ

′
x , ⟨ΨΨΨ ′ j

x ⟩ j=1,J
]T

(134)

Here,ΠΠΠ is a matrix comprising the relevant coefficients, as noted in Eq. (59). Equa-
tions (134) and (59) then provide a general framework for preparing linearized optical
property inputs necessary for VLIDORT. Computation of

[
φx ,ϕx , ⟨ΨΨΨ j

x ⟩ j=1,J

]
can

then be achieved by the calculation of
[
φ′
x ,ϕ

′
x , ⟨ΨΨΨ ′ j

x ⟩ j=1,J

]
for a given parameter x.

Let us first consider the derivation of
[
φ′
x ,ϕ

′
x , ⟨ΨΨΨ ′ j

x ⟩ j=1,J

]
for certain aerosol

optical properties in a given atmospheric layer, i.e., τA,ωA, andβk
A,whereβk

A indicates
one of the elements in the kth aerosol scattering Greek matrix Bk

A.
For x = τA, we have

φ′
x = τA

∂τA

∂τA
= τA (135)

ϕ′
x = τA

∂δA

∂τA
= τAωA (136)

ΨΨΨ ′ j
x = τA

∂B j
A

∂τA
= 000 (137)

For x = ωA, we have
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φ′
x = ωA

∂τA

∂ωA
= 0 (138)

ϕ′
x = ωA

∂δA

∂ωA
= ωAτA (139)

ΨΨΨ ′ j
x = ωA

∂B j
A

∂ωA
= 000 (140)

For x = βk
A, we have

φ′
x = βk

A
∂τA

∂βk
A

= 0 (141)

ϕ′
x = βk

A
∂δA

βk
A

= 0 (142)

ΨΨΨ ′ j
x = βk

A
∂B j

A

βk
A

=
{

δAβk
A

βk if j = k

0 if j ̸= k
(143)

Expressions in Table1 are then derived by substituting equations (135)–(143) into
Eq. (134).

The UNL-VRTM tool integrates the VLIDORT with linearized Mie/T-matrix
codes, and this combination allows us to generate Stokes vectors and associated
analytical Jacobians with respect to any group of aerosol microphysical parameters
for two aerosol modes. Thus, we must supply the

[
φ′
x ,ϕ

′
x , ⟨ΨΨΨ ′ j

x ⟩ j=1,J

]
quantities for

all such parameters.Wegive an example here, assuming that the aerosols are bimodal,
having lognormal size distributions parameterized by geometric standard deviations
(σ f

g andσ c
g ), geometricmedian radii (r fg and r

c
g), and non-sphericity parameters (εf and

εc) for the fine and coarse modes.We note that ε is available only when non-spherical
particles are assumed (T-matrix code is applied). Complex refractive indices aremf

r −
mf

ii andm
c
r − mc

i i . Given thesemicrophysical properties, the linearizedMie/T-matrix
codes will compute for each mode the scattering and extinction efficiencies (Qsca

and Qext), the set of expansion coefficients (B j
A) of scattering phase matrix, as well

as the derivatives of these quantities with respect to these microphysical properties.
The optical thickness for aerosol extinction and scattering and the associated Greek
matrix coefficients within for one atmospheric layer can be calculated through

τA = τ f
A + τ c

A = 3V f
0Q

f
ext

4r feff
+ 3V c

0 Q
c
ext

4r ceff
(144)

δA = δfA + δcA = 3V f
0Q

f
sca

4r feff
+ 3V c

0 Q
c
sca

4r ceff
(145)

B j
A = δfAB

f j
A + δcAB

c j
A

δfA + δcA
(146)
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We can compute vector
[
φ′
x ,ϕ

′
x , ⟨ΨΨΨ ′ j

x ⟩ j=1,J

]
for a given parameter by differenti-

ating the above Eqs. (144)–(146). For x = V f
0 as an example:

φ′
x = V f

0
∂τA

∂V f
0
= V f

0
3Qf

ext

4r feff
= τ f

A (147)

ϕ′
x = V f

0
∂δA

∂V f
0
= V f

0
3Qf

sca

4r feff
= δfA (148)

ΨΨΨ ′ j
x = V f

0
∂B j

A

∂V f
0
= δfA

δA
(Bf j

A − B j
A) (149)

And similarly for x = r fg, we have

φ′
x = τ f

A

(
r fg
Qf

ext

∂Qf
ext

∂r fg
−

r fg
r feff

∂r feff
∂r fg

)

(150)

ϕ′
x = δfA

(
r fg
Qf

sca

∂Qf
sca

∂r fg
−

r fg
r feff

∂r feff
∂r fg

)

(151)

ΨΨΨ ′ j
x = ϕ′

x

δA
(Bf, j

A − B j
A)+ r fg

∂Bs j
A

∂r fg
(152)

In a similar fashion, we can obtain the vector
[
φ′
x ,ϕ

′
x , ⟨ΨΨΨ ′ j

x ⟩ j=1,J

]
for other fine-

mode aerosol parameters including τ f
A, ωf

A, V
f
0 , m

f
r, m

f
i , r

f
g, σ f

g, and εf (as listed in
Table2). For coarse-mode aerosol parameters, the derivations are the same with
superscript ‘s’ replaced by ‘c’.

We have implemented various aerosol-loading vertical profiles into the UNL-
VRTM, including uniform, exponential-decreasing, and quasi-Gaussian profile
shapes (Sect. 2.3). Derivatives of layer aerosol optical thickness with respect to these
profile parameters [such as H in Eq. 31, γ and zpeak in Eq. (32)] are also included
in order to calculate Jacobians of Stokes vector to these parameters, and the vectors[
φ′
x ,ϕ

′
x , ⟨ΨΨΨ ′ j

x ⟩ j=1,J

]
for these derivatives are also shown in Table2.
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